

EVALUATION OF INVENTORY REDUCTION STRATEGIES:

BALAD AIR BASE SIMULATION CASE STUDY

THESIS

Aaron V. Glassburner, AFIT/ENS

AFIT-LSCM-ENS-12-05

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the United
States Government.

AFIT-LSCM-ENS-12-05

EVALUATION OF INVENTORY REDUCTION STRATEGIES: BALAD AIR
BASE SIMULATION CASE STUDY

THESIS

Presented to the Faculty

Department of Operational Sciences

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Logistics and Supply Chain Management

Aaron V. Glassburner, BS

AFIT/ENS

March 2012

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT-LSCM-ENS-12-05

EVALUATION OF INVENTORY REDUCTION STRATEGIES: BALAD AIR
BASE SIMULATION CASE STUDY

Aaron V. Glassburner, BS

Captain, USAF

Approved:

________//signed//___________ _6-March-2012_
Dr. John O. Miller (Chairman) Date

________//signed//___________ _6-March-2012_
Dr. Alan Johnson (Member) Date

iv

AFIT-LSCM-ENS-12-05

Abstract

 The end of military operations in Iraq brought a new set of challenges for Air

Force supply professionals as they responsibly reduced levels of assets within the country

while supporting on-going missions. This research evaluates two separate supply

reduction plans that were implemented at Balad Air Base during the Air Force’s final

months in the area of operations. The logic of Air Force consumable inventory

computations are modeled in detail and historical data from supply records are utilized to

evaluate each plan’s supportability to different notional fleet sizes. Each plan is

evaluated under measures of backorders, backorder quantities, and customer wait time.

Furthermore, this research combines these measures with a commercial business measure

to ascertain which plan is better suited to reducing supply levels while maintaining

adequate levels of support to on-going operations.

 An agent-based model simulation is developed as the analysis technique for this

study. Simulation models are excellent tools to evaluate alternative scenarios that are

otherwise too costly or impractical to evaluate on a live system. Agent-based modeling

provides a unique bottom-up approach where analysis is permissible not only at a system

level but also at the process level. The model developed for this study allows for the

differentiation and evaluation of the supply reduction plans implemented at Balad Air

Base under dynamic conditions. Additionally, it provides insight for consideration by Air

Force senior leaders into which plan is better suited to support supply drawdowns in

future contingency base closings.

v

Dedication

To my wife and best friend whose love and encouragement kept me looking forward each
day and has made everything in my life possible.

Also, my children, whose unconditional devotion and support make me realize the
important issues in life and provide the reason for my being.

Finally, to my parents, whose hard work and dedication throughout my childhood set the
example for me in adulthood.

vi

Acknowledgments

 I want to thank my advisor, Dr. John O. Miller. His willingness to take on “one

of those other guys” as a student and his flexibility in allowing this research to take its

course will always be remember and greatly appreciated. Additionally, I thank my

reader, Dr. Alan Johnson, for giving me a foundation in logistics and modeling – how

little did I know that I knew so little.

 I owe thanks to Dr. Douglas Blazer and Ms. Gale Bowman of HQ AFLMA, Dr.

David Fulk of LMI, Greg Gehret and Todd Burnworth of GLSC for being a continuous

source of knowledge and feedback. Every one of your inputs has shed a little more light

on Air Force supply doctrine and theory.

 Aaron V. Glassburner

vii

Table of Contents

 Page

Abstract .. iv

Dedication ... v

Acknowledgments.. vi

List of Figures ... x

List of Tables .. xii

1. Introduction .. 1

1.1 Background ... 1
1.2 Basic Inventory Policy Theory ... 3
1.3 Estimation Methods of Demand ... 4

1.3.1 Demand Variability Effects .. 5
1.3.2 Negative Binomial Distribution .. 6

1.4 Air Force Stockage Policy .. 8
1.5 Problem Statement .. 13
1.6 Research Questions ... 13
1.7 Scope and Limitations ... 14
1.8 Outline ... 14

2. Simulation of Base Stock Level Reduction for an Overseas Contingency Operating
Base ... 15

2.1 Introduction ... 15
2.2 Overview ... 17
2.3 Model Development .. 18

2.3.1 Model Initialization .. 19
2.3.2 Demand Generation .. 20
2.3.3 Demand Receipt and Stock Issue Process .. 23
2.3.4 Computation of Consumable Stock Levels .. 24
2.3.5 Backorder Processing .. 25
2.3.6 Replenishment Process .. 26
2.3.7 Excess Stock Shipment Process ... 26
2.3.8 Inventory Reduction Methods ... 27
2.3.9 Assumptions ... 29

2.4 Supporting Data .. 30
2.4.1 Resulting Data Set ... 31
2.4.2 Assignment of High, Mid-High, Mid-Low and Low Categories 32
2.4.3 Categorical Assignment of Demand Frequency Rates 33

viii

2.4.4 Categorical Assignment of Demand Size ... 34
2.4.5 Categorical Assignment of Unit Price .. 35
2.4.6 Part Mix .. 36
2.4.7 Modeling Demand Size .. 37
2.4.8 Fleet Sizes ... 37
2.4.9 Period of Study ... 38
2.4.10 Data Generation .. 39

2.5 Verification and Validation ... 39
2.6 Experimental Design and Methodology ... 40

2.6.1 Responses of Interest .. 41
2.6.2 Proposed Statistical Measures ... 42

2.7 Results and Analysis .. 43
2.7.1 Verification of ANOVA Assumptions .. 43
2.7.2 Proposal of New Statistical Measures ... 44
2.7.3 Results for Fleet Size of 12 .. 45
2.7.4 Results for Fleet Size of 24 and 36 .. 48

2.8 Conclusions .. 49

3. Case Study ... 51

3.1 Introduction ... 51
3.3 Supply Chain Inventory Reduction Simulation .. 54

3.3.1 Model Development ... 54
3.3.2 Model Validation and Verification ... 58
3.3.3 Model Execution ... 58

3.4 Analysis ... 60
3.4.1 Experimental Design ... 60
3.4.2 Results .. 61

3.5 Conclusions .. 65

4. Conclusion ... 66

4.1 Introduction ... 66
4.2 Research Summary ... 66
4.3 Summary of Findings .. 67
4.4 Future Work .. 70

Appendix A. Model Descriptions and Default Values .. 72

Appendix B. ELRS Receive Demand Process Flow and Java Code 74

Appendix C. ELRS Stock Issue Process Flow and Java Code .. 76

Appendix D. ELRS Receive Shipment Process Flow and Java Code 80

Appendix E. ELRS Stock Replenishment Process Flow and Java Code 83

ix

Appendix F. ELRS Ship Excess Stock Process Flow and Java Code 86

Appendix G. SoS Receive ELRS Demand Process Flow and Java Code 89

Appendix H. SoS Stock Issue Process Flow and Java Code ... 90

Appendix I. SoS Stock Replenishment Process Flow and Java Code 93

Appendix J. Java Code for Base Computations of Consumable Item Stock Levels 95

Appendix K. COLT Parameters Computation Java Code ... 102

Appendix L. Negative Binomial Formula for Expected Backorders Java Code 103

Appendix M. COLT Marginal Analysis Process Java Code ... 106

Appendix N. Initial Inventory Update Process Flow and Java 111

Appendix O. Item Demand Level Changes Update Process Flow and Java Code 114

Appendix P. Quarterly Inventory Update Process Flow and Java Code 117

Appendix Q. Closure Plan Update Process Flow and Java Code 120

Appendix R. CRD, CDQ, CDQ2, and DOFD Calculation Flow and Java Code 124

Appendix S. Post-hoc Tests for Fleet Sizes of 24 and 36 .. 126

Appendix T. Summary Chart ... 128

Bibliography ... 129

x

List of Figures

 Page

Figure 1. General Model Flow ... 19

Figure 2. Demand Behavior of Developed Model over Time ... 20

Figure 3. Agent State Chart ... 22

Figure 4. Timeline of Drawdown Plans ... 39

Figure 5. Box Plots for 12 Aircraft .. 48

Figure 6. Core Inventory Management Processes ... 55

Figure 7. Model Behavior of Inventory Level over Time ... 59

Figure 8. Summary of Tukey’s HSD Analysis of Customer Wait Time 63

Figure 9. ELRS Receive Demand Processing Logic ... 74

Figure 10. ELRS Flowchart of Stock Issue Logic ... 76

Figure 11. Flowchart of ELRS Receive Shipment Logic .. 80

Figure 12. Flowchart of ELRS Stock Replenishment Logic ... 83

Figure 13. Flowchart of ELRS Ship Excess Stock Logic .. 86

Figure 14. Flowchart of SoS Receive ELRS Demand Logic... 89

Figure 15. Flowchart of SoS Stock Issue Logic .. 90

Figure 16. Flowchart of SoS Stock Replenishment Logic ... 93

Figure 17. Flowchart of Initial Inventory Update Logic .. 111

Figure 18. Flowchart of Item Demand Level Change Update Logic 114

Figure 19. Flowchart of Quarterly Inventory Update Logic .. 117

Figure 20. Flowchart of Closure Plan Update Logic ... 120

Figure 21. Flowchart of CRD, CDQ, CDQ2 and DOFD Calculation Logic 124

xi

Figure 22. Box Plots for 24 Aircraft .. 126

Figure 23. Box Plots for 36 Aircraft .. 127

xii

List of Tables

 Page

Table 1. USAF Range Criteria ... 10

Table 2. Quartile boundaries for data categorization ... 32

Table 3. Quartile, Categorical Assignment and Descriptive Statistics for DDFR 34

Table 4. Quartile, Categorical Assignment and Descriptive Statistics for DDR 35

Table 5. Quartile, Categorical Assignment and Descriptive Statistics for Unit Price 35

Table 6. Listing of Selected Parts .. 36

Table 7. Treatment Levels for 12 Aircraft ... 41

Table 8. Shapiro-Wilk Test Results for Responses of Interest .. 44

Table 9. Mann-Whitney U Test Results for 12 Aircraft .. 47

Table 10. Listing of Selected Parts .. 56

Table 11. Shapiro-Wilk Test for Normality of CWT Response 62

Table 12. Mann-Whitney U Test Results for Percentage of Returnable Inventory 64

Table 13. Mann-Whitney U Test Results for 24 Aircraft .. 126

Table 14. Mann-Whitney U Test Results for 36 Aircraft .. 127

1

EVALUATION OF INVENTORY REDUCTION STRATEGIES: BALAD AIR

 BASE SIMULATION CASE STUDY

1. Introduction

1.1 Background

When U.S. troops pulled out of Iraq in December 2011 it marked over 8 years of

U.S. presence in the country. During that time, the military services mobilized, sustained

operations, and demobilized both personnel and supporting equipment. The processes of

mobilization and demobilization are a set of synchronized phases of a military conflict

whose deliberate execution ensures the availability of resources for supported and

supporting commanders. Of the two phases, mobilization is given much more attention

as the achievement of military and national security objectives rely on the success of the

process. Demobilization, although not as time sensitive, is just as complex and detailed

as mobilization (Department of Defense (DOD), 2010:91). The planning of demobilizing

a military force from an operation commences for a variety of reasons to include

expiration of authorized service time, changes in the forces required, or political reasons

(DOD, 2010:91).

The process of planning for the demobilization of U.S. Forces in Iraq started in

2008 with the signing of the Security Agreement between the United States and Iraq.

Actual demobilization of personnel and equipment started in late 2009 and continued

throughout 2010. While combat missions concluded in 2010, military missions, under

the auspice of stability operations, continued through the year 2011. It’s during this

2

segment of time, when demobilization operations were at their height and the delicate

balancing act of redeploying equipment and sustaining capability was paramount to on-

going military missions.

The U.S. Air Force (USAF) started planning demobilization efforts of Balad Air

Base in February 2010. The planning process of drawing down supply inventories

initially started as a concerted effort between the Air Force Central Command

(AFCENT), 735th Supply Chain Operations Group (735 SCOG), Logistics Management

Institute (LMI) and Air Combat Command. As the 735 SCOG documented most of the

issues in a supply chain drawdown-closure plan, LMI developed a plan to gradually

drawdown authorized supply levels (Fulk, 2010:5). Gaining AFCENT’s agreement in

April of 2010, LMI began the execution of their plan against Balad Air Base’s stock

levels in August 2010. Their plan was projected to be a 14-month effort concluding in

October 2011. Although somewhat slower than expected, the execution of the plan was

gradually drawing down stock levels until an unexpected directive was received from the

Air Staff. In March 2011, Headquarters USAF, with AFCENT concurrence, directed the

735 SCOG to abandon plan of gradually drawing down stock levels and set all maximum

authorized stock levels to zero on base managed consumable items with the following

characteristics (Fulk, 2010:5).

• Items not having caused a mission capable event

• Items having caused mission capable event but with zero on-hand balance

This decision imposed a degree of risk which would only be known after the

completion of the demobilization phase, but it also posed an interesting opportunity to

research inventory replenishment strategies during the demobilization phases of conflict

3

operations. The remainder of this chapter is dedicated to providing general background

material deemed relevant to understanding the problem statement and research

objectives.

1.2 Basic Inventory Policy Theory

Inventories have major influences on operational decisions and, as such, great

attention is imperative in their management. Peterson, Pike and Silver (1998) state that at

the core of any inventory management policy lay three fundamental questions.

• How often should inventory status be reviewed?

• When should order for replenishment be made?

• How much should be ordered?

Various factors and assumptions, both internal and external to an organization,

affect the answers to these questions. The optimal answers are ones that are, on average,

congruent with the operational objectives of an organization (Peterson and others,

1998:28). The optimal answers to these questions dictate what an organization’s

inventory management policy should be and in what form it exists.

The type of inventory management policy chosen by an organization is a decision

that balances the uncertain risk of not having materials when needed against the costs of

maintaining complete awareness of inventory levels. Inventory management policies are

commonly classified as either continuous or periodic. Continuous inventory policies are

ones where stock statuses are always known, thereby ensuring an organization’s complete

situational awareness of its inventory posture (Peterson and others, 1998:236). Periodic

4

inventory policies are those policies where stock statuses are reviewed at predetermined

time intervals and great uncertainty exists in knowledge of stock level values. The choice

between a continuous or periodic review inventory policy hinges upon the costs of not

having enough inventory when needed.

When a company has determined the type of inventory management system its

operations require, it must choose a form of inventory management policy. The form of

an inventory management system centers on whether an organization wants to order a

constant or variable amount of stock each time they place an order. Those organizations

choosing to order a constant amount of stock at each replenishment instance will choose a

policy of ordering the same quantity every time an order is placed, no matter their current

inventory position. While organizations choosing to order a variable amount of stock

each time will implement a policy of ordering up to a predefined level. One relevant,

exogenous factor that dictates a chosen inventory policy and its form is demand.

1.3 Estimation Methods of Demand

 To determine the best inventory policy, it helps if an organization knows

something about the underlying demand pattern of the items in its inventory. The

demand for an item is influenced by certain economic factors. During an item’s useful

life span different estimation methods, or forecasting techniques, are required to

reasonably assess how much of an item will be requested by a prevailing market and its

customers. Additionally, demand is influenced by how an item is used (Peterson and

others, 1998:50). If an item is used independently of any other item, demand on that item

is said to be independent demand. If an item is required as the result of a demand on

5

another item, demand on that item is said to be dependent demand. The aforementioned

factors affect the patterns of demand witnessed for items. It is this patterning of an item’s

demand that plays a role in the development of inventory policies.

In deriving solutions for inventory management problems, demand patterns are

usually assumed to take one of two forms – deterministic or stochastic. Deterministic

demand essentially means that the organization will know what demand looks like over a

continuum of time. Little estimation or forecasting takes place in inventory management

policies assuming deterministic demand. Stochastic demand patterns are used for items

whose demand pattern changes over time. While this assumption complicates the

analysis of inventory solutions, it is more applicable to the behaviors of real life

inventory policies. Forecasting methods for stochastic demand patterns take on many

forms – from simple moving averages to robust probability distributions. The practicality

of the assumed underlying demand pattern is critical to the selection of the inventory

policy.

If demand is always deterministic, the selection of an inventory management

policy would be simple – match the policy to demand pattern that meets all requirements

all the time. The dilemma facing organizations is that demand patterns are usually

stochastic in that they have variance. In other words, stochastic demand patterns are

constantly lumpy or changing in amount and frequency. In a situation of lumpy demand,

trying to match the best inventory management policy to the recent changes in demand

can be detrimental to an organization in terms of pecuniary and human capital costs.

1.3.1 Demand Variability Effects

6

Unknown and non-constant demand creates uncertainty from which organizations must

shield themselves. Demand variation drives an organization to select the inventory

management policy that, on average, reasonably predicts the underlying demand pattern

and best protects the organization against uncertainty through the accumulation of

inventory.

In a situation with stochastic demand, various factors can be estimated to predict

average demand. The factors of the statistical mean and variance of demand are often

used to calculate a statistical distribution of demand. Two common distributions used are

the Poisson and negative binominal. Sherbrooke (1992) notes that the Poisson

distribution best exemplifies the case of simple demand with a constant mean and little to

small variation, while a generalized form of the Poisson distribution, the negative

binomial distribution, can be used to model stochastic demand by calculating the mean

and variation of demand separately. This use of the negative binomial distribution has

proven useful in the DOD’s current inventory management methods since witnessed

demand often has a variance greater than its mean. Referencing common statistical

notion and theory, Sherbrooke (1992) states the negative binomial distribution regularly

refers to the probability that it takes a+x trials to achieve exactly a successes where

each trial has a (1-b) probability of success. Sherbrooke’s mathematical notation

follows (Sherbrooke, Optimal Inventory Modeling of Systems: Mult-Echelon

Techniques, 1992):

1.3.2 Negative Binomial Distribution

𝒏𝒆𝒈(𝒙) = �𝒂+𝒙−𝟏𝒙 �𝒃𝒙(𝟏 − 𝒃)𝒂 (1.1)

7

where x = 0….n, a>0 and 0<b<1. Sherbrooke notes that the mean, μ, and variance-

mean-ratio, V, of this distribution can be defined as:

𝝁 = 𝒂𝒃
𝟏−𝒃

 𝒂𝒏𝒅 𝑽 = 𝟏
𝟏−𝒃

 (1.2)

where V > 1 . Subsequently, he proves that the parameters of the negative binomial

function are algebraic manipulations of the above equations:

𝒂 = 𝝁
𝑽−𝟏

𝒂𝒏𝒅 𝒃 = 𝑽−𝟏
𝑽

 (1.3)

 Deemer (1974) with his work for Army Material Command demonstrated how

the negative binomial distribution could be applied to continuous review inventory

policies. He outlines the following assumptions used in his model:

• Demands are fulfilled as they are received from available on-hand stock

• Backorders are placed when on-hand stock is inadequate to fulfill existing

demands

• Replenishment orders are placed when inventory position reaches the pre-

determined order point

• Replenishment orders are made in quantities equal to the determined inventory

level minus the current inventory position

• Reorder points have to be greater than a value of zero

• Order and Ship Time are known and constant (deterministic)

• Demands during lead-time follow the negative binomial distribution

The work of Deemer and others set the foundation for the USAF’s current

consumable inventory stockage policy. Mathematical models for the application of the

negative binomial distribution are numerous and complex. The reader is referred to

8

Deemer’s work to see how the computational method of recursion applies in this

situation.

In combination, the type and form of an organization’s inventory policy dictates

frequency of inventory reviews, frequency of replenishment orders, and the size of

replenishment orders. These decisions affect how much protection an inventory affords

an organization and its operations from uncertainty. Due to its nature of operations, the

military is often faced with great uncertainty in the accomplishment of its mission. For

this reason, great lengths are taken by the DoD and military services in determining

relevant inventory management strategies.

1.4 Air Force Stockage Policy

The sustainment of USAF flying missions is greatly contingent upon adequate

levels of supporting stock. This supporting stock is made up of two types of stock –

consumables and recoverables. Consumables, as the name implies, are those items that

are consumed in use or cannot be economically repaired (Department of the Air Force

(DAF), 2011:15). Recoverables are those items, that upon failure, have the potential to

be economically repaired (DAF, 2011:15). As the USAF manages each category of items

differently, we will only be addressing its management of consumable items in this

research.

The goal of USAF Stockage Policy is to maximize customer support while

minimizing inventory costs (DAF, 2011:1). USAF stocking decisions are based on the

presence or absence of demand. The absence or presence of demand drives numerous

decision criteria when deciding the range and depth of item stock levels. In the absence

9

of demand, the USAF uses non-demand based stock leveling techniques rooted in the

judgment of subject matter experts to establish and manage stock levels of items. In the

presence of demand, the USAF uses stock leveling techniques whose theories have been

proven through numerous academic and analytical studies. In the context of studying

inventory replenishment strategies at the end of conflict, focus is given to demand-based

stock leveling techniques and their applicable inventory policies towards the management

of consumable items.

 In setting stock levels for consumable items on which past demands have been

recorded, the USAF uses past demand data as a predictor of future demand. The USAF

conducts extensive demand and item consumption data collection to determine the most

appropriate stocking actions of an item. At the root of demand-based stocking decisions

lie two fundamental questions – what to stock and how much to stock. The USAF calls

these concepts range (what to stock) and depth (how much of an item to stock) (DAF,

2011:2). An item’s range has to be determined before its depth.

 The USAF uses several criteria to determine the range of their inventory (see

Table 1). In keeping with DoD policy, the USAF’s range of inventory items is

determined by mission requirements and/or economic need (DAF, 2011:5). A stock level

will be computed for any item meeting one of seven range decision criteria as specified

by Air Force Manual (AFMAN) 23-110, the USAF Supply Manual.

10

Table 1. USAF Range Criteria

Range Criteria
1. First MICAP demand
2. High priority Awaiting Part (AWP) demand
3. Mission Impact Code (MIC) 1
4. Greater than 11 customer demands
5. Demand driven bench stock
6. A mission change gain detail exists
7. Economic Range Model

 How much to stock of an item (item depth) is calculated when the USAF has

determined a mission requirement or economic need for an item. Item depth is

determined by one of two methods contingent upon the item’s authorized managing

entity. If the item’s stock level is directed to be managed locally, the item’s depth is

computed at the base level. An item’s stock level is computed by centralized agencies if

that item is directed to be managed by either Air Force Materiel Command (AFMC) or

the Defense Logistics Agency (DLA). In this case, the computed stock level will then be

subsequently applied to the inventories of bases where the item physical resides.

In base computed stock levels an item’s depth is the aggregate sum of an

economic order quantity, an order and ship time quantity, and a safety level quantity.

The economic order quantity (EOQ) utilized by the USAF is based off the cost-

minimizing order quantity algorithm developed by Ford W. Harris in 1913. It is

commonly referred to as the Wilson EOQ method. Order and ship time quantity values

are a function of an item’s order fulfillment time and its average daily demand rate.

Safety level quantities can be computed through one of three formulas with the primary

formula being a function of order fulfillment time, variance of demand, daily demand

rate, and the variance of order fulfillment time. In addition to these three components,

11

the USAF applies a truncation factor of 0.999 to the computation to upwardly round the

value to the next highest whole number. Base computed stock levels are implemented

through a continuous review inventory policy.

In centrally computed stock levels for items with a demand history, an item’s depth is

calculated using one of two methodologies: Readiness Base Leveling (RBL) or

Customer Oriented Leveling Technique (COLT). The RBL method is used for select

consumable items managed by AFMC, while COLT, the more common of the two

methods, is used to compute stock levels for DLA managed items. Both methodologies

have an objective function that seeks to minimize backorders and customer wait times.

Centrally computed stock levels are implemented through a periodic review inventory

policy implemented by centralized agencies.

First utilized in 2001 by AFMC at the Air Logistics Centers, COLT fundamentally

changed the way the USAF computed consumable stock levels. Before the invention of

COLT, the USAF strictly utilized Harris’s EOQ model to manage consumable items

procured through DLA (Gaudette and others, 2001:4). COLT relaxes the assumptions

made by EOQ model and seeks to minimize customer wait times under pecuniary

constraints. COLT overcomes the following common violations to the EOQ assumptions

through a multi-echelon systems approach that addresses the demand and lead-time

variability commonly observed in today’s supply chain.

• Known and constant lead-time

• Known and constant demand

• Demand independence

• Single echelon supply chains

12

• Known ordering and holding costs

Witnessing the benefits of COLT at the depot levels, AFMC worked with other

USAF major commanders late in the year 2003 to apply the COLT methodology to base

level inventories. The biggest advantage to using COLT at the base level is that it

computationally linked wholesale supply performance data to retail supply requirements

(DAF, 2004:43). COLT achieves this linkage with various factors and a fundamentally

different assumption regarding demand. First, COLT utilizes the percentage of time a

wholesale activity expects to have an item available when requested and the historical

average time a customer has had to wait for a backordered part (Vinson and Gaudette,

2002:19). Secondly, COLT assumes that demand during lead-time is distributed as a

negative binomial random variate (Vinson and Gaudette, 2002:19). This distributional

assumption is based in part on previous data showing that demand variance often exceeds

the mean of demand during lead-time (Deemer, 1974; Vinson and Gaudette, 2002:19).

As stated previously, COLT’s objective function seeks to reduce customer wait

time under fiscal constraints. The initial implementation of COLT was based strictly on

the achievement of a stock level within a fiscal constraint. Due to budgetary processes

and the tendency of the initial COLT model to optimize customer wait time as a function

of inventory investment, stock levels were computed noticeably lower in base level

inventories. Due to the impact of small stock levels at a base, the marginal analysis

method of the COLT method was matured to set stock levels under not only fiscal

constraints but also a predefined target performance objective (DAF, 2004:28). This

target performance objective, known as a sort value, was determined by AFMC to be the

13

most acceptable method in setting stock levels for base inventories. The COLT model is

now used for computing stock levels for DLA consumables at both deployed and home

station locations.

1.5 Problem Statement

As the USAF completes its withdraw from Iraq and sets its focus on the

remainder of operations in Afghanistan, the need for a synchronized plan that best

redeploys equipment while sustaining capabilities in a complex environment will re-

emerge for senior leadership. While variables and factors at the macro-level of

operations will play an enormous role in the demobilization effort, an understanding of

actions at the micro-level of operations will aid in the development of a successful plan.

The goal of this research project is to evaluate the recent supply reduction methods of the

Iraq withdrawal to gain an understanding of consumable inventory management policies

that can be used in future demobilization efforts. In addition, this research attempts to

provide an unbiased evaluation of inventory reduction plans and their impact to mission

accomplishment in contingency situations.

1.6 Research Questions

1. Should drawdowns, at the system level, of inventory at contingency locations be
treated any differently than the redistribution of excess inventory at peacetime
locations?

2. Is there a statistical and/or practical difference among policies for reducing

inventory levels in the final phases of a contingency operation?

14

3. What are appropriate measures to be used in evaluating policies for drawdown of
inventory in a contingency environment?

4. What parameters should guide inventory drawdowns in future contingency

operations?

1.7 Scope and Limitations

 The investigative questions posed above are only a subset of the range of

questions that can be addressed with the appropriate simulation model. Simulation

models are appropriately suited for this research as there is no simple analytical model

and the real world system has complex interactions and interdependences that make it

challenging to understand macro-level results (Carson, 2005: 17). The purpose of this

project is to evaluate past inventory management actions in the hopes of developing new

theories and guidelines of inventory management for use during the phases of

contingency operations.

1.8 Outline

 Chapter 2 provides a detailed description of model development along with

pertinent information of input data modeling and output analysis. Chapter 3 is an

application of the model to the case study of the Balad AB drawdown plans along with

results. Chapter 4 concludes the thesis by discussing significant findings and providing

recommendations for future research. Chapters 2 and 3 are structured as an individual

journal paper and conference proceedings.

15

2. Simulation of Base Stock Level Reduction for an Overseas Contingency

Operating Base

2.1 Introduction

Outdated supply strategies and the USAF’s continued presence in Saudi Arabia

after the first Gulf War gave cause to the recommendation of new supply processes in

support of sustainment operations at contingency locations (Hunt, 2011). With the

conclusion of the Gulf War, the USAF again faced a situation where lagging supply

strategy caused the redeployment of equipment to be conducted hastily with an enormous

amount of work levied upon those stateside supply professionals who received the

equipment (Fulk D. A., 2011). During the war in Iraq, supply support strategies

developed after the conclusion of sustainment operations in Saudi Arabia were

implemented with success. Contrasting to this success was the fact that USAF supply

professionals were faced with the challenge of moving years’ worth of inventory out of a

war zone yet again.

To prevent the situation that occurred in Saudi Arabia, the Global Logistics

Support Center (GLSC) developed a plan that would gradually reduce supply levels and

systematically convert sustainment levels of inventory back to expeditionary levels. The

goals behind this plan were threefold: ensure the preservation of equipment

accountability, maximize weapon system availability to the very end of operations, and

support an efficient and effective base closure effort (Fulk, 2010). The computational

methods behind this planned drawdown assumed a linear decreasing trend in demand that

would require support up until a time where it would be feasible to support requirements

16

out of readiness spare kits (RSP). Upon gaining agreement on the plan with Air Force

Central Command (AFCENT), GLSC’s lead unit, the 735th Supply Chain Operations

Group (SCOG), implemented their plan against Balad AB’s inventory. The developed

plan performed within expectations up until a decision was made by the Air Staff, with

AFCENT concurrence, to immediately zero out stock levels on items that either had not

caused a non-mission-capable for supply (NMCS) event in the past or had previously

caused a NMCS event but maintained a zero on-hand balance as of the date of the

decision. These items are identified in the USAF’s supply system with a mission impact

code (MIC) of 1 and are commonly referred to as MIC-1 items.

The situation and decisions regarding the plan to reduce inventory at Balad AB

presents unique opportunity to study different facets of inventory management policy.

Analytically, the plan presents a situation in which USAF inventory management policies

could be evaluated under the assumption of a linear decreasing trend in demand. The

situation also brings up strategic considerations surrounding inventory management

policies and processes in the redeployment phase of contingency. The solutions are at

best estimations due to the fact that developed plans were not carried through to the

closure of Balad AB. It is the clarification and development of estimations and

assumptions into strategies and policies that will aid supply support strategies in future

redeployments. An agent-based model simulating Air Force inventory management

policies was developed to compare and contrast the planned and implemented inventory

reduction techniques.

17

2.2 Overview

 This research develops an agent-based simulation model of the retail supply chain

supporting Balad AB during its closure. The success of a supply chain, especially one

which supports deployed warfighters, depends upon the interactions of many different

complex processes and systems. Abstractions of four inventory management processes

are used in this research to evaluate the inventory reduction plans used during Balad

AB’s closure and to broaden the understanding of feasible strategies that could be utilized

to reduce the inventory of a contingency operating base back to expeditionary levels.

The first process conceptualizes how demands are placed on the supply chain at the air

base. The second process of the model represents the processing and fulfilling of

customer demands by a supporting primary operating stock (POS) and deployed RSP

inventories. The third process abstracts the logic of USAF inventory management

computations. Finally, the fourth process generalizes the resupply of inventory levels at

the deployed operating base.

 The use of agent-based modeling to study inventory reduction is an untested

approach. Many academic studies in the analytical fashion have attempted to determine

an optimal algorithm that would best reduce inventories under the assumption of linear

decreasing demand – see Barbosa and Friedman (1979); Ramani and Venkatraman

(1988); Hill, Omar and Smith (1999); and Zhao, Yang and Rand (2001). All of these

authors seek to determine the optimal point at which the stocking of inventory should be

suspended in order to minimize ordering and replenishment costs while still maintaining

an acceptable degree of service. The approach in this research is not to determine that

18

optimal point, but to understand the characteristics of decreasing demand in order to

increase the depth of knowledge regarding wartime supply strategies. The use of

simulation is very applicable to this topic since the application of different policies and

the study of their respective impact on the overall system cannot be achieved without

incurring great opportunity and pecuniary costs. Banks and others (2010) defend the use

of simulation in decision-making when the experimentation of new designs or policies

can take place before their implementation in order to investigate and gain insight into

potential outcomes. Hence the use of a simulation model for evaluating and studying the

differing inventory reduction plans at Balad AB.

2.3 Model Development

Many factors influence the performance of the USAF inventory management

system. Some factors, such as unit price, are controllable through management decisions.

Other factors, such as the stock availability of upstream suppliers, are out of a supply

professional’s control. They all, though, have some influence in the parameterization and

performance of the supply chain management system. The developed model provides

flexibility in the setting of such parameters to evaluate simulated expeditionary and

contingency operations. While the focus of the model is to study the different inventory

reduction plans that were implemented at Balad AB, the setting of various factors in

various combinations is possible thus providing an analyst many different options from

which to experiment. Parameters available for alteration are listed in Appendix A, while

an overall flow of the model is provided in Figure 1.

19

Agents Generate Demand
Rate ~E(DDFR)

Size~NBD(DDR/DDFR,VOD)

Can ELRS
Fulfill Demand?

Send Backorder to
SoS

Can SoS fulfill
ELRS Order

Fulfill Agent
Demand

Fulfill ELRS
Order

Send order to
Tier 1 Supplier

Yes

Yes

No

No

Capture Demand
and Order
Statistics

Calculate/set
levels using COLT

or EOQ depth
methods

Closure
Method Set?

No

Set levels by Max
ASL or EDQ

method
Yes

Acronyms
ASL – Adjusted Stock Level
DDFR – Daily Demand Frequency Rate
DDR – Daily Demand Rate
EDQ – Expected Demand Quantity
ELRS – Expeditionary Logistics Readiness Squadron
E(DDFR) – Expected Value of DDFR
NBD - Negative Binomial Distribution
SoS – Source of Supply
VOD – Variance of Demand

Figure 1. General Model Flow

North and Macal (2007) state that a model’s execution time of a simulation can be

divided into two phases – the total time simulated (execution horizon) and the period

applicable to answering questions and assisting decision making (guidance horizon). The

period within the execution horizon, but outside the guidance horizon is commonly

referred to as the initialization period. The initialization period allows the model to

remove any bias from starting the system empty and idle. The developed model for this

thesis has a static execution horizon of 27 months and a dynamic guidance horizon that

can be set before the model’s execution. A simulation execution horizon of 27 months

was chosen to allow for an adequate initialization period that can be set by the analyst. A

recommended 180 days of activity should be simulated by the model before capturing

2.3.1 Model Initialization

20

data for analysis to allow a substantial amount of demand to have been processed through

the system (see Figure 2).

Figure 2. Demand Behavior of Developed Model over Time

GLSC’s plan developed for Balad AB was a 14-month drawdown plan that would

remove all POS inventory from the base’s retail system two months before the base

closing (Fulk, 2010). Given the high variability of the simulation’s initial start-up period

and the fact that asset levels are updated quarterly (DAF, 2011), an initialization period of

no less than 400 days’ worth of simulated time is recommended (see Figure 2). This

initialization period allows a sufficient number of demands to be generated and the

accurate calculation of demand levels and reorder points when using either base or

central computation methods.

The occurrence of requirements on an inventory system, demand, has often been

modeled as discrete probability distribution in simulation models. This event is often

looked at holistically rather than from the perspective of the individual or entity

generating a demand. The developed model takes a scalable approach to generating

demand by allowing agents to place requirements on the inventory system independently

2.3.2 Demand Generation

21

of each other. Each agent generates a demand based on a statistical distribution. The

total demands placed on the system are a function of demands placed by all agents. The

use of agents in this manner deviates from some of the standard agent characteristics that

Macal and North consider such as:

• An agent interacts with other agents

• An agent is situated in an environment where it can interact with other

agents

• An agent can have goal-directed behaviors

• An agent has the ability to learn and adapt its behaviors based on its

experience with the external environment.

 Macal and North (2008), though, state that agents do not necessarily need to

possess all of these characteristics to be considered an agent-based model. The

methodology by which agents are used in this model doesn’t necessary preclude the

model from being considered agent-based as Chan et al (2010) point out that agent-based

simulation is usually a hybrid model consisting of discrete events generated by

autonomous objects (agents). The ability of the agents to simultaneously and

independently place demands is what makes agent-based modeling and simulation a

powerful tool to understanding the research under question (Chan et al, 2010). The use

of a fleet size parameter in the model provides scalability to the model by allowing the

population of agents placing demands to be set between a value of one, a single aircraft,

and 36, a multiple of either a six or twelve aircraft unit type code tasking requirement.

Demands for two parts are generated at a frequency described by each part’s daily

demand frequency rate (DDFR) and at a random size based off the part’s daily demand

22

rate (DDR). Each demand is simply described by the requested part type, a generation

timestamp, and the quantity demanded. Demands are generated through messages,

containing the three aforementioned parameters, as the agent transitions between

different states. Agent states can be considered triggered responses or actions. To

simulate the operation of an aircraft, five states were modeled for agent behavior:

available, flight, maintenance check, part breakage, part maintenance. As the agent

transitions to the part breakage state a demand occurs and a message is sent placing a

demand on our inventory system. Finally, the actions of placing the part back onto the

aircraft are simulated by the agent’s assuming a “part maintenance” state. There is no

timing of maintenance actions simulated in the developed model, making them an

insignificant factor to the model. Their programming allows for use in future studies. A

representation of an agent’s state chart is displayed in Figure 3.

Figure 3. Agent State Chart

23

 In the developed model, all demand fulfillment logic is executed by the entity

labeled ELRS (Expeditionary Logistics Readiness Squadron). The ELRS entity is a java

active object that receives messages from agents and either fulfills the agents’ demands

or queues the agents’ demands when insufficient stock is present in the inventory. Logic

within the ELRS object is constantly run on a simulated daily basis to process agent

demands. Demand fulfillment is executed through the utilization of two sources of stock

- the POS inventory and the RSP inventory. The POS inventory is always checked for

parts before the RSP inventory.

2.3.3 Demand Receipt and Stock Issue Process

Upon receiving an agent demand, the logic within the ELRS object will first

check the inventory levels of its POS. If enough stock is present in the POS, then the

demand is fulfilled completely from this source of parts. If the inventory levels of the

POS are insufficient in fulfilling the entire demand quantity, the stock issue logic satisfies

the demand by issuing then remaining on-hand stock in the POS inventory and then

fulfilling the delta of demand with on-hand stock from the RSP inventory. If unable to

issue any stock from POS, the RSP inventory is used to fulfill the agent demand.

Common to the issue logic for the POS, logic for issues from the RSP will fulfill as much

of the demand quantity as possible. If the inventory position of a part is at such a status

where current on hand stock in either the POS or RSP inventory cannot meet current and

future demands, then a backorder is queued for the demand. A flowchart for the receipt

of demand and stock issuing logic can be found in Appendices B and C.

24

The computation of consumable stock levels can occur through two different

methods, each executed by one of four events. In the initialization of the model, the

analyst selects either standard base computations for stock levels or the Customer

Oriented Leveling Technique (COLT) marginal analysis method utilized by AFMC in the

calculation of consumable stock levels. The model will use the selected technique to

compute consumable item stock levels at the following events.

2.3.4 Computation of Consumable Stock Levels

• Initial level computation executed on the 30th day of simulated time.

• Anytime the inventory position is less than or equal to the item’s reorder point

and the amount of change equals or exceeds thresholds defined by the “Square

Root” rule in AFMAN 23-110, Volume 2, Part 2, Chapter 19, Attachment 19B-

21.

• At the simulated times of 1 Jan, 1 Apr, 1 Jul and 1 Oct to represent the quarterly

update of stock levels.

• At monthly intervals when a closure method has been selected by the analyst

during the initialization of the model.

The standard base computations in the model involve traditional equations for

economic order quantity, order and ship time quantity and safety level quantities. The

variance equations for demand and order and ship time specified in AFMAN 23-110 have

been coded in the model as well. The coding for these equations can be found in

Appendix J.

25

The COLT method compares the calculation of expected backorders for each item

given the demand for the items and conducts a marginal analysis of the two items,

increasing the reorder point of the item that produces the largest marginal benefit in the

reduction of expected backorders. The coding for the COLT method assumes a negative

binomial distribution of expected backorders and conducts a marginal analysis method

with a sort value target equal to the one dated 25 Mar 2011 for Balad AB. For an in-

depth explanation of the application of the negative binomial distribution with respect to

backorders and the COLT methodology the reader is referred to articles by Deemer

(1974), Fulk et al (2006) and Vinson (2002). The coding for the negative binomial

distribution of backorders and the COLT marginal analysis method can be found in

Appendices L and M.

 The simulated supply chain creates customer backorders as necessary when

requirements cannot be met with on-hand stock from either the POS or RSP inventory

(DAF, 2011). The developed model will only create a customer backorder when the

combined stock levels of the POS and RSP inventories are insufficient in meeting the

requirement. The model simulates backorders by replacing the demand quantity in the

original demand request with a quantity equal to the delta of unfilled demand. This

precludes the model from placing another demand on the system. If an agent’s demand is

partially filled, the original demand is replaced by a demand equal in size to what remains

to be fulfilled for the agent. An agent’s demand is only deleted from the model when it is

fulfilled in its entirety.

2.3.5 Backorder Processing

26

 The replenishment process of the model replicates the described continuous

review inventory replenishment model in AFMAN 23-110, Volume 2, Part 2, Chapter 19,

Attachment 19D-1. On a daily basis, the model conducts a continuous review of its

inventory levels to determine each part’s inventory position. The inventory position of a

part is equal to the sum of on hand quantities in both the POS and RSP inventories and

any quantity of the part already on order minus any quantity of the part on backorder.

Whenever the inventory position for an item is less than or equal to the reorder point

calculated by the model, the logic in the ELRS active object generates a stock

replenishment order there by “pulling” inventory from the source of supply (DAF, 2011).

The amount required for replenishment is equal to the total base need minus the inventory

position (DAF, 2011). Stock replenishment orders take the form of messages passed

between the ELRS active object and the SoS (Source of Supply) active object. The SoS

could represent any source of supply for parts, but in this study it represents the Defense

Logistics Agency (DLA). Replenishment order messages contain a numerical identifier

for the part requested and the replenishment order quantity. Each time a replenishment

message is generated, the time and amount of the order are captured for statistical

measures of order and ship time. A flow chart for the stock replenishment logic and the

associated java code can be found in Appendix E.

2.3.6 Replenishment Process

 When an inventory reduction method has been selected in the model and aircraft

are present, the ELRS object will initiate excess stock shipments anytime the on hand

2.3.7 Excess Stock Shipment Process

27

quantity of POS for a part exceeds a newly computed order up-to-level during the

specified drawdown period. This logic simulates the shipment of excess stock off the

base during redeployment operations at a contingency location. If aircraft remain in the

model when a newly computed POS level creates an excess shipment, the model logic

will “ship” the quantity of stock above the newly computed POS level. If no aircraft are

present in the model when a newly computed POS level creates an excess shipment, the

model logic will first fill any stock level deficiency in the RSP and then “ship” any

remaining excess POS inventory. These transactions are captured in the model’s output.

Logic for the creation of excess shipments and accompanying java code is presented in

Appendix F.

 Two inventory reduction methods are presented in the model. One is based on the

setting of non-demand-based stock levels for POS inventory. AFMAN 23-110 describes

the policy of setting non-demand-based stock levels as a way of establishing sufficient

stock levels in situations where historical demand patterns are not reasonable estimations

of future demand patterns (DAF, 2011). The other method available for selection models

the formula developed by the 735th SCOG to linearly decrease stock levels. This

method, referred to as expected demand quantities, calculates stock levels as a function of

the item’s daily demand rate and the time left until base closure. For ease of reference,

this plan will be referred to as the “EDQ” plan. The developed model allows the analyst

to select the inventory reduction method and a start date for it to be implemented.

2.3.8 Inventory Reduction Methods

28

 The settings of non-demand-based stock levels are a way to adjust stock levels

based on the assumption that past demand is not a predictor of future demand. The

method is referred to as adjusted stock levels (ASLs). The USAF has developed three

different types of ASLs to adjust supply support against changing levels of customer

demand: minimum, maximum, and fixed. Of the three, the setting of maximum ASLs

are used in this model as it was the decision by Air Staff to set maximum ASLs on non-

MIC-1 and MIC-1 assets with zero on-hand balances. Maximum ASLs act as stockage

ceilings in that they restrict computed stock levels to a specified level. In the case of

Balad AB’s closure, maximum ASLs on the POS inventories of non-MIC 1 and MIC-1

items with zero on-hand balances were set to a value of zero (Fulk D. A., Balad Levels

Drawdown Plan, 2011). This particular application of applying maximum ASLs on

Balad AB’s POS effectively zeroed out demand levels and reorder points on those items

identified under this plan. This policy is demonstrated in the model by zeroing out an

item’s level at the time specified during the initialization of the model. For future

reference, this plan will be referred to as the “Maximum ASL” plan. The flowchart and

java logic for this inventory reduction plan can be found in Appendix Q.

The EDQ plan developed by the 735th SCOG was based on a formula of expected

demand that calculated expected future demands as a function of an asset’s DDR and the

remaining time of base operations. The expected demand formula is similar to a mission

change DDR (MCDDR) that is used by stateside bases undergoing increases or decreases

in the inventory of an assigned weapon system, but it doesn’t utilize sortie information as

in the MCDDR calculations. The expected demand formula simply applies the remaining

time in a finite horizon to an item’s DDR under the assumption that demand on an asset

29

and thus its DDR would decrease in a linear fashion as operations scale back. It should

be noted that this plan assumed at least some correlation between past demand and future

demand. The parameters of the formula zero out POS levels two months prior to the

closure of the base or when aircraft no longer remain present in the model. It is at this

time when any further operations were assumed to be supported out of RSP inventories.

Special rounding rules were to have been applied to keep stock available as the time

horizon for Balad AB’s closure decreased. Model logic and implemented code can be

found in Appendix Q.

 In order to maintain a focus on the research in question, various assumptions were

made that influenced model development. In addition to assumptions specified by

Deemer (1970) when studying continuous review inventory policies, the following key

assumptions were made:

2.3.9 Assumptions

• Data obtained through AFLMA, the GLSC, and LIMS-EV is accurate and

complete.

• Demand interarrival times are assumed to be an exponentially distributed function

of the item’s daily demand frequency rate (DDFR) divided by a denominator

equal to the average amount of aircraft flying sorties from Balad AB on 25 Mar

2011.

• Demand size is assumed to be distributed according to the negative binomial

function with a variance calculated using the variance of demand (VOD) formula

specified by AFMAN 23-110.

30

• RSP demand levels are non-demand based and POS levels are demand based.

The RSP levels do not represent the actual levels of the items in RSP kits at Balad

AB, but are modeled to provide a sense of realism in the model.

• Bench stock is not explicitly modeled and assumed part of the POS inventory.

• No cannibalization, lateral resupply or local sourcing of parts. All parts are

sourced from the designated source of supply.

• No commonality exists among parts for different weapon systems.

• Delays for inbound transportation of stock are modeled at two levels, but no delay

exists for transportation of stock off base.

• RSPs are filled with any excess items from the POS inventory during the

drawdown phase of the base.

• RSPs remain at the contingency location until the end of the drawdown.

• No gaps in time between deployment of like MDSs at the location.

• A finite planning horizon that ends with date specified for the withdrawal of U.S.

forces from Iraq.

2.4 Supporting Data

 Key to structuring the experiment for this research was being able to categorically

define differing levels of demand and unit price, in addition to obtaining relative

consumption and leveling information for all consumable items stocked at Balad AB.

The following data sources were used to capture data pertinent to the model’s input

parameters.

31

• A COLT input file (n = 9,975), dated 25 Mar 2011, obtained from the 735th

SCOG by way of the 402nd SCMS at Wright Patterson AFB

• A LIMS-EV download of the item records for all inventory stock at Balad AB on

25 Mar 2011 (n = 33,257)

• An RSP detail listing for items in High Priority Mission Support Kits at Balad AB

on 25 Mar 2011(n = 19,968)

• An inventory transaction history report, obtained from LIMS-EV, of all issues and

due-outs at Balad AB between the dates of 25 Sept 2009 and 25 Mar 2011

(n=23,071)

Total records from all combined data sets equaled 86,271, but not all records were

pertinent to the research. Records had to be categorized, filtered, and linked to obtain a

final data set that represented currently demanded DLA-managed consumable items

supported by RSP inventories. To provide insight on how the final data set was obtained,

a brief description of how data was categorized, filtered and linked is provided.

The data filtering and consolidation of information was made possible by using

the Microsoft Access software program to the link the different data sources and querying

for specific data points. Of the 33,257 item records captured for Balad AB, only 25,580

were items with a expendability-recoverability-reparability code of XB3 and a budget

code of 9 (consumable item). Of those items identified as a consumable items, 91% (n =

23,192) had a routing identifier code classifying DLA as the source of supply and of

those items only 8,318 had some type of demand registered in the previous 18 months.

2.4.1 Resulting Data Set

32

When linking these 8,318 records to the 735th SCOG’s COLT input file and to the RSP

detail listing, the resulting dataset numbered 4,842 item records. Filtering was applied to

this data to narrow our final data set to a predetermined supported mission design series,

F-16 aircraft. The resulting data set numbered 1,166 records. These item records were

then divided between MIC-1 and non-MIC 1 records to achieve a commonality to the

inventory drawdown situation at Balad AB.

Being able to categorically assign items to different categories of demand

frequency, demand size and unit price was necessary to the research’s experiments.

Categorical assignment of data was conducted on the 8,318 records identified as DLA-

managed consumable items possessing some type of registered demand in the previous

18 months. Categories for demand frequency, demand size and unit price were

determined by ranking that relative factor in relation to every other item and then

dividing items based on quartile boundaries as shown in Table 2. For example with this

methodology all items with a relative factor ranking between and including a value 1 and

2080 were put in the “Low” category.

2.4.2 Assignment of High, Mid-High, Mid-Low and Low Categories

Table 2. Quartile boundaries for data categorization

Quartile Value
Min 1
Q1 2080
Q2 4160
Q3 5239

Max 8318
IQR 4160

33

 The categorical assignment of demand frequency was made possible by

computing an item’s DDFR from data provided in an item’s record. DDFR is a

quantitative calculation that captures the daily average of requests for a certain item

(DAF, 2011). The use of DDFR allows for the determination of how fast demands arrive

into the supply system. Essentially, it is an 18-month moving average, but its formula

involves the use of three moving windows of time. It is calculated by dividing the

aggregate sum of demands occurring in three rolling window periods –the current six

month period, ND(CP); seven and 12 months ago, ND(1PSM); 13 and 18 months ago,

ND(2PSM) – by a time period defined by as the difference between the current date (CD)

and the item’s date of first demand (DOFD). The denominator of this formula has a

minimum value of 365, to ensure that at least 2 customer demands register a significant

value, and a maximum value of 540. The formula for DDFR is (ND(2PSM) +

ND(1PSM) + ND(CP))/(CD – DOFD) .

2.4.3 Categorical Assignment of Demand Frequency Rates

 The number of demands in each period and the DOFD were obtained using data

provided in an item’s record. The date of 25 Mar 2011 was used as the current date since

the item record was pulled for that date. Using these pieces of information, a DDFR was

computed for all consumable items. Using categories based off of the previously

described quartile computations, all consumable items were divided into four categories –

high, mid-high, mid-low, and low. These four categories provided a simple, yet

effective, way to categorically assign the frequency of demands for an item. The

34

quartiles, categorical assignments, and simple descriptive statistics for demand frequency

rates for the 8,138 demanded DLA-managed consumable items are provided in Table 3.

Table 3. Quartile, Categorical Assignment and Descriptive Statistics for DDFR

Categorical Assignment Daily Demand Frequency
Quantile Item Count Grouping Max μ Min σ

Min <= x <= 2080 2080 Low 0.0019 0.0019 0.0018 0.0000
2081 <= x <= 4160 2080 Mid-Low 0.0027 0.0024 0.0019 0.0003
4161 <= x <= 6239 2079 Mid-High 0.0051 0.0034 0.0027 0.0006
6240 <= x <= 8318 2079 High 0.1238 0.0103 0.0051 0.0092

The categorical assignment of demand size was made possible by computing an

items’ DDR from data provided in an item’s record. DDR is a quantitative calculation

that computes the average quantity of an item demanded daily. It allows for the

determination of the size of each arriving demand into the supply system. DDR is

calculated by dividing the total quantity of an item requested, known as the cumulative

recurring demand (CRD) factor, over a time defined by subtracting an item’s DOFD from

the current date. The minimum amount of time used in the DDR computation is

constrained to 180 days, while the maximum time is set to 540 days. Due to an

annualization process conducted in the months of September and March, the CRD

quantity of an item is always based on the most recent 365-day period. In addition, an

item’s DOFD is also annualized at the same time by resetting it to a date 365 days before

the date of the annualization process. The formula calculating an item’s DDR is

CRD/(CD-DOFD) .

2.4.4 Categorical Assignment of Demand Size

35

The CRD quantity and the DOFD values were obtained using data provided in an

item’s record. The date of 25 Mar 2011 was used as the current date since the item

record was pulled for that date. Using these pieces of information, a DDR was computed

for all consumable items. Using the same quartile computations used to categorize an

item’s DDFR, DDRs for items were divided into four categories – high, mid-high, mid-

low, and low. The quartiles and categorical assignments for daily demand rates for the

8,138 demanded DLA-managed consumable items are provided below.

Table 4. Quartile, Categorical Assignment and Descriptive Statistics for DDR

Categorical Assignment Daily Demand Rate
Quantile Item Count Grouping Max μ Min σ

Min <= x <= 2080 2080 Low 0.0048 0.0028 0.0019 0.0009
2081 <= x <= 4160 2080 Mid-Low 0.0111 0.0070 0.0048 0.0018
4161 <= x <= 6239 2079 Mid-High 0.0333 0.0187 0.0111 0.0062
6240 <= x <= 8318 2079 High 53.3077 0.2292 0.0333 1.2804

The categorical assignment of unit price used the same quartile computations,

dividing unit price into four categories – high, mid-high, mid-low, and low. The quartiles

and categorical assignments for the unit price for the 8,138 demanded DLA-managed

consumable items are provided below.

2.4.5 Categorical Assignment of Unit Price

Table 5. Quartile, Categorical Assignment and Descriptive Statistics for Unit Price

Categorical Assignment Unit Price
Quantile Item Count Grouping Max μ Min σ

Min <= x <= 2080 2080 Low $1.99 $0.67 $0.01 $0.55
2081 <= x <= 4160 2080 Mid-Low $13.71 $6.41 $1.99 $3.31
4161 <= x <= 6239 2079 Mid-High $96.53 $39.97 $13.72 $22.35
6240 <= x <= 8318 2079 High $45,696.75 $1,116.71 $96.54 $2,636.67

36

 Of the 1,166 F-16 parts identified on the Balad AB item record supported by RSP

levels, over 679,000 different combinations would have to be run to compare all different

combinations of parts. Additionally, each part, due to model design, could have 18

different parameters. The differing of parameters would complicate the experiment and

thus cause further uncertainty into what factors truly affect the response variables of

interest. It was decided that of the 18 parameters, only 4 parameters would differ – unit

price, DDFR, DDR and VOD. These three parameters allow the research to be

conducted within reasonable bounds under which to study the differing drawdown

policies. The determination of what levels of the differing part parameters to model were

made under the previously described categorical assignment of item factors. Within each

quartile different parts were picked that could provide a reasonable estimation of demand

and unit price. The following table provides a listing of the four parts chosen. It should

be noted that in following analysis of various responses of interest, the results of the

items 3 and 4 were omitted as the DDFR and DDR values were such that substantial

amounts of demand or results failed to be produce. These findings will be addressed as

future research in Chapter 4.

2.4.6 Part Mix

Table 6. Listing of Selected Parts

Item No. NSN Nomenclature DDFR DDR VOD Unit Price
1 2620-01-157-3821 F-16CD NOSE TIRE DESERT 0.0444 0.2926 2.6 744.59
2 5331-01-007-4898 PACKING PERFORMED 0.0314 0.8482 39.5 1.44
3 1560-01-124-6137 STRUT, AIRCRAFT 0.0018 0.0019 1.84 749.58
4 5310-01-057-5689 WASHER MS21206-C4 0.0018 0.0019 3.87 0.04

37

 Individual demand sizes are assumed to follow a negative binomial distribution

whose mean is equal to a part’s DDR divided by its DDR and whose variance is equal to

the VOD value calculated from the 25 March 2011 item record. Since a part’s DDR is a

measure of the quantity of the item used daily dividing this by DDFR gives a reasonable

approximation of individual demand size. The VOD of an item is calculated using three

factors – an item’s cumulative demand quantity (CDQ) , cumulative demand quantity

squared (CDQ2) and the number of days since the item’s DOFD. An item’s CDQ value

is number of item units ordered by a customer, while an item’s CDQ2 value is the sum of

all CDQ squared values (DAF, 2011). An item’s CDQ value is collected separately from

an item’s CRD value even though they both represent the same data due to a difference in

the date at which CDQ data collection started (DAF, 2011). Representative examples of

these calculations are represented equations 2.1 and 2.2.

2.4.7 Modeling Demand Size

𝑬(𝑫𝒆𝒎𝒂𝒏𝒅 𝑺𝒊𝒛𝒆) = .𝟖𝟒𝟖𝟐 𝒖𝒏𝒊𝒕𝒔 𝒅𝒆𝒎𝒂𝒏𝒅𝒆𝒅
𝟏 𝒅𝒂𝒚

÷ .𝟎𝟑𝟏𝟒 𝒅𝒆𝒎𝒂𝒏𝒅𝒔
𝟏 𝒅𝒂𝒚

≅ 𝟐𝟕 𝒖𝒏𝒊𝒕𝒔/𝒅𝒆𝒎𝒂𝒏𝒅 (2.1)

𝑽(𝑫𝒆𝒎𝒂𝒏𝒅 𝑺𝒊𝒛𝒆) =
𝑪𝑫𝑸𝟐−𝑪𝑫𝑸

𝟐

𝒏
𝒏

=
𝟐𝟏,𝟕𝟔𝟒−𝟒𝟓𝟖

𝟐

𝟓𝟒𝟎
𝟓𝟒𝟎

≅ 𝟑𝟗.𝟓 (2.2)

 The model was run over different sizes of supported aircraft fleets – 12, 24, 36.

Multiples of twelve were used to represent differing numbers of standard six-ship

deployment packages. Historical sortie data for Balad AB identifies an average of 24

aircraft flying sorties into and out of Balad AB from Jan 2009 to October 2010. Using

2.4.8 Fleet Sizes

38

this data, fleet sizes of 12, 24, and 36 were selected to provide a representative number of

aircraft supported during the drawdown phase of a base.

 The two drawdown policies were implemented at differing times as demonstrated

in Figure 5. Within the context of this experiment, the commonality of time between the

two plans is important to the understanding of which drawdown plan performs better

under similar circumstances. Comparing EDQ plan 14 months out from base closure

against the Maximum ASL plan 9 months out from Balad AB’s closure would constitute

an unacceptable level of comparison. To gain commonality over measures of

performance, data was only captured during the simulation time representing the period

from March 2011 to December 2011. Capturing data earlier than this period could

possibly skew the results towards a favoring of the maximum adjusted stock level plan

even though it wasn’t implemented until March 2011.

2.4.9 Period of Study

Additionally, the period of study covers different drawdown timelines of aircraft.

Aircraft in the model redeploy according to one of two timelines, 6 or 12 months, and at a

whole integer factor that would result in zero aircraft remaining the end of a model

replication. For example, a fleet size of 24 aircraft under 12-month drawdown timeline

would be taken out of the model at a rate of 2 aircraft every month.

39

Mar 03 – Jul 10 Aug 10 Sep 10 – Feb 11 Mar 11 Apr 11 – Nov 11 Dec 11

EDQ Plan Period

Max ASL Plan Period

Build-up & Sustainment
Operations at Balad AB

Leveling drawdown plan
applied to Balad AB

inventories

Inventory levels reduced through
leveling drawdown plan

Non-MIC1, BC9 items
supported out of RSPs until

base closure

Levels directed to zero on non-
MIC1, BC9 items and MIC1, BC9

items w/zero OH balance

Balad AB closed

Figure 4. Timeline of Drawdown Plans

 Through the variation of inventory policies, drawdown timelines and fleet sizes,

the developed model will produce a variety of responses of interest over the period of

study. Variability of the number of backorders and backorder quantities between the

different levels of factors will provide insight into which inventory policy provides better

service levels in different settings.

2.4.10 Data Generation

2.5 Verification and Validation

In order to substantiate the developed model, different validation and verification

techniques were utilized to ascertain the model’s appropriateness to the system in study.

Independent opinions were sought from AFMC analysts at the 402 SCMS to ensure the

model reasonably represented the nature of the USAF supply system. Results of the

model were compared to that of models utilized by these analysts to solve real-world

40

consumable supply calculations. The feedback, suggestions and comments of these

analysts were key in making sure the coding in the model was implemented correctly.

Since the developed model simulated two inventory policies, of which one was never

enacted, the validation and verification of the model against historical data proved

impractical. Nonetheless, the output of the model’s COLT logic was compared to

outputs from spreadsheet tool used by AFMC analysts to provide a degree of validity.

2.6 Experimental Design and Methodology

 The focus of this study is to measure the supply service levels over time of

different inventory reduction policies which could be utilized to support the final months

of a contingency. Based on this goal, the response variables of total number of backorder

occurrences and total quantity of backorders will be studied under different levels of the

independent factors of inventory policy and aircraft redeployment rates for three different

sizes of aircraft fleets. In this research, we only consider customer-related backorders

resulting from insufficient on-hand levels of stock, not backorders resulting from internal

supply system actions.

 The factor of inventory policy is varied at two levels – one level representing the

Maximum ASL plan and the other level representing the EDQ plan. The factor of

drawdown timeline is varied at two levels - 6 and 12 months, while aircraft fleet sizes are

varied at three levels (12, 24, and 36) for 3 different experiments each with 4 treatments.

An example of the treatment levels for the fleet of 12 aircraft is presented in Table 7

below.

41

Table 7. Treatment Levels for 12 Aircraft

Experiment Design Drawdown Timeline
6-Months 12-Months

Inventory Policy EDQ Plan Treatment 1 Treatment 3
Max ASL Plan Treatment 2 Treatment 4

The developed agent base model uses agents, representing aircraft, to generate

inventory demands. When compared to the common metrics of the Air Force supply

system, this methodology is much more granular as the Air Force supply system

computes metrics at a holistic level for the entire demand of one item, not the per aircraft

demand. Additionally, Air Force supply statistics and deployed aircraft fleet size

continuously change over time complicating the ability to relate the generation of demand

to any one size of aircraft fleet. However, we can reasonably assume that the generation

of inventory demand is a function partially based on aircraft fleet size. This assumption

allows us to form the hypothesis that larger aircraft fleet sizes will generate demand more

frequently in our model.

Two primary responses were gathered to measure the differing levels of factors and

their impact. These responses are:

2.6.1 Responses of Interest

• Total number of backorders

• Total backorder quantity

Capturing the number of stockouts and the number of units backorder allow for the

determination of each inventory policies’ maximization of service level and its ability to

satisfy customer demand in a timely manner (Peterson, Pyke, & Silver, 1998).

42

The differentiation in the mean response values of the differing treatments for

each fleet size is analyzed with an Analysis of Variance (ANOVA) technique. The

ANOVA technique allows for the analysis and testing of the statistical significance

between the mean response values of each of the twelve treatments. Additionally, it

allows for the effects of the individual factors and the interaction between factors to be

investigated. The ANOVA techniques provide insight on how the differing inventory

policies perform for different fleet sizes redeploying at different rates. It is assumed that

the responses of interest will decrease in the treatments whose factors include an

inventory policy of EDQs and a drawdown timeline of 12 months. The ultimate goal of

using the ANOVA method is to determine if a preferred plan exists for differing fleet

sizes undergoing different drawdown rates.

2.6.2 Proposed Statistical Measures

An ANOVA for three two-factor factorial experiments will be utilized. The

validity of the ANOVA method results is predicated by the following three assumptions.

• The responses of each treatment level must be normal.

• The variance of the responses between treatment levels must be equal.

• Each treatment must be a random and independent sample.

The verification of these assumptions is required through statistical measurements to

substantiate the study’s results. The homogeneity of variances between treatment levels

is tested by the Levene’s test for equality of variances, while the normality of responses is

determined by fitting each treatment’s responses to a normal distribution curve and

testing for a goodness of fit (GoF) with the Wilk-Shapiro test statistic calculated by the

43

software package JMP. Both the test for homogeneity of variance and normality will be

conducted using a significance level of 0.05. The independence of each treatment is

assumed valid as each treatment is run independently with a unique random number

stream.

2.7 Results and Analysis

 Responses for each design point were produced by conducting individual

simulations using a unique random seed generated by the default Anylogic© random

number generator. The simulation was run at each design point as an individual Monte

Carlo experiment of 31 replications to satisfy the assumptions of independence and

normality. The use of Monte Carlo experiments ensure the generation of random

numbers, while the number of replications satisfies the sample size requirements of the

Central Limit Thereom (Vogt, 2005).

 The use of the ANOVA technique requires the satisficing of the three previously

mentioned assumptions. The Shapiro-Wilk goodness-of-fit test was used to evaluate to

distribution of responses for each treatment. Table 8 provides the results of each

treatment’s test as generated by the JMP software package. A p-value of less than 0.05

indicates that the test’s null hypothesis of the distribution being normal must be rejected.

2.7.1 Verification of ANOVA Assumptions

44

Table 8. Shapiro-Wilk Test Results for Responses of Interest

Treatment Total DUOs Total DUO Qty
No. Inventory Policy Drawdown Timeline Fleet Size p-value p-value
1 Max ASL = 0 6 months 12 acft 0.01 0.0001
2 Max ASL = 0 6 months 24 acft 0.0005 0.0022
3 Max ASL = 0 6 months 36 acft 0.07* 0.0014
4 EDQ 6 months 12 acft 0.0001 0.0001
5 EDQ 6 months 24 acft 0.001 0.0001
6 EDQ 6 months 36 acft 0.0001 0.0001
7 Max ASL = 0 12 months 12 acft 0.0001 0.0001
8 Max ASL = 0 12 months 24 acft 0.0141 0.0001
9 Max ASL = 0 12 months 36 acft 0.0264 0.0006
10 EDQ 12 months 12 acft 0.0001 0.0001
11 EDQ 12 months 24 acft 0.0001 0.0001
12 EDQ 12 months 36 acft 0.0001 0.0001

* - Meets the assumption of normality at α=0.05

As indicated in Table 8, the assumption of normality does not hold in a majority

of the treatments. Additionally, the assumption of variance homogeneity across the

treatments must be verified. Since the proposed experiment design called for using

ANOVA to measure the difference in treatments within each fleet size, the variance of

the treatments is considered at this level. Using the Levene’ s test for equality of

variances in the JMP software package, it was determined that there was sufficient

evidence to conclude that the variances among the treatments were not equal (p-value <

0.0001). These violations of ANOVA assumptions requires the use of statistical

measures that do not rely on normality or the equality of variances.

 The violations of ANOVA assumptions complicate the statistical analysis of the

developed model. These violations are probably caused by the use of discrete counts of

the response variables, rather than ensemble (moving) averages, to conduct the

2.7.2 Proposal of New Statistical Measures

45

comparisons. The preferred alternative to the proposed ANOVA technique would a non-

parametric method of multiple comparisons. A Kruskal-Wallis (K-W) test followed with

the Mann-Whitney U test for pairwise comparisons was chosen to evaluate differences

between the two inventory policies under the conditions of non-normality and unequal

variances. The K-W test is a non-parametric, or distribution free, test based on ranks of

sample observations that tests a null hypothesis for equality of population means

(Newbold, Carlson, & Thorne, 2010). As a non-parametric test, it’s only assumption is

that the sample’s observations be independent which has been previously proven. The

Mann-Whitney U Test compares two independent random samples to detect differences

in the central location of two population distributions (Newbold, Carlson, & Thorne,

2010).

 A single K-W test on a categorical grouping of inventory policy and drawdown

timeline factors was conducted to evaluate differences among the policy and timeline

factors for an aircraft fleet size of 12 on median change in the number of total backorders

and total backorder quantities. The testing for the response variable of total backorders

was statistically significant with 𝑝 < 0.0001 as was the test for total backorder

quantities with 𝑝 < 0.000. These results indicate there is a statistically significant effect

on both response variables due to the changes in the inventory policy and/or the

drawdown timelines. Further testing is required to quantify specific differences.

2.7.3 Results for Fleet Size of 12

Post hoc testing was conducted using the Mann-Whitney U test with a Bonferroni

approach at a family-wise Type 1 error rate of 0.05 and individual Type 1 error rate of

46

0.0083. Table 9 displays these tests along with each test’s individual p-value. While the

full complement of tests under the Mann-Whitney U technique are provided, the true tests

of interest are those that compare different design points in which only one independent

variable is alternated – drawdown timeline or inventory policy. Focusing our attention on

those tests leads to insights that help differentiate the performance of each plan.

The Mann-Whitney U tests of the different inventory policies under similar

drawdown timelines indicate a significant difference in the total number of backorders

and backorder quantities. The results demonstrate that the EDQ plan outperforms a

maximum ASL plan with less backorder occurrences and smaller backorder quantities

whether the drawdown timeline is 6 or 12 months. When comparing the same inventory

policy under different drawdown timelines our results differ depending on the inventory

policy being study. Under an inventory policy of maximum ASLs, our results indicate

that backorders and backorder quantities will increase when supporting a shorter

drawdown timeline. These results imply that a speculation strategy in which we count on

future demand to not exceed expeditionary supply levels is more likely to cause

occurrences of backorders.

 In the case of the inventory policy of EDQs, the tests did not report a statistically

significant difference in response measurements between a 6-month redeployment and

12-month redeployment. Given the inventory behavior of our model, these results can be

reasonably expected as the EDQ plan keeps assets available longer and doesn’t change

asset levels until such a time when the computed EDQ level is less than regular level

computational values using the COLT technique. The results imply that a strategy of

postponement where we slightly delay shipment of excess stock based on a reasonable

47

expectation of future demand exceeding expeditionary levels of stock result in less

backorders. When this implication is taken in consideration with the fact the EDQ plan

still zeros out stock levels 2 months before the base closure, the conclusion that can be

formed is that an inventory policy of EDQs not only maintains adequate levels of supply

support but also reduces stock in a manner that provides time for the redeployment of that

stock. The caveat to this conclusion is that all other planning factors remain constant

over time.

A final note on the results should be made regarding the comparison of the EDQ

inventory policy supporting a 6-month redeployment and the maximum ASL plan

supporting a 12-month redeployment. Statistically insignificant results are reasonably

expected since the maximum ASL inventory policy in this scenario will be supporting

less aircraft during the period of study than the EDQ policy. The results of all tests can

be found in Table 9.

Table 9. Mann-Whitney U Test Results for 12 Aircraft

Response Design Point -Design Point p-value

Total
Backorders

6-Months/Max ASL 12-Months/EDQ 0.0001*
6-Months/Max ASL 6-Months/EDQ 0.0001*
12-Months/Max ASL 12-Months/EDQ 0.0003*
6-Months/Max ASL 12-Months/Max ASL 0.0045*
6-Months/EDQ 12-Months/EDQ 0.0169
6-Months/EDQ 12-Months/Max ASL 0.1648

Total
Backorder
Quantities

6-Months/Max ASL 12-Months/EDQ 0.0001*
6-Months/Max ASL 6-Months/EDQ 0.0004*
6-Months/Max ASL 12-Months/Max ASL 0.0071*
12-Months/Max ASL 12-Months/EDQ 0.0021*
6-Months/EDQ 12-Months/EDQ 0.0421
6-Months/EDQ 12-Months/Max ASL 0.2808

* - Statistically significant at α*=0.0083

48

The box plots of Figure 6 provide a side-by-side comparison of the tests for each

response variable of interest which can be used to clarify Table 9. The analysis of these

plots should be made in light of the model’s limitation of simulating data for only two

parts. USAF weapon systems are often supported by hundreds of consumable parts.

Since backorders in the model were produced by the demand for two competing parts, an

extrapolated conclusion should be made that the ASL plan would generate even more

backorders for a greater number of modeled parts. Additionally, it can be reasonably

assumed that an EDQ plan for additional parts would result in less backorders and better

supply service levels overall.

Figure 5. Box Plots for 12 Aircraft

 In addition to a fleet size of 12 aircraft, the differing inventory policies were also

studied at fleet size levels of 24 and 36. Single K-W tests on total backorders and total

backorder quantities proved significant under each respective fleet size with p < 0.0001

2.7.4 Results for Fleet Size of 24 and 36

49

for both levels of fleet sizes. Post hoc testing with a family-wise error rate of 0.05

revealed that similar results to those achieved for a fleet size of 12. The typical number

of experienced backorders and sizes of backorder quantities increase with an inventory

policy of maximum ASLs supporting a shorter drawdown timeline (6-months). These

results indicate that supply service levels, based solely on the merit of backorder

occurrences and size, increase with a linear drawdown of levels. Additionally, the results

provide insight that an EDQ plan will perform comparably over both shorter and longer

drawdown timelines. The results of the pairwise testing for each respective fleet size can

be found in Appendix S.

2.8 Conclusions

 Simulation models allow for both statistical inferences and generalizations of

overall system performance. The results presented provide a generalization of how

differing inventory reduction plans would perform under representative demand trends

and differing rates of aircraft redeployments. Analysis among the different inventory

reduction policies proved statistical significant differences which lend credibility to their

relevance. The analysis, under the stated assumptions, indicates that the plan developed

by the GLSC would have created minimal backorder occurrences compared to a plan of

maximum ASLs. The developed model and subsequent analysis also indicate that

backorder occurrences in this situation are magnified under shorter redeployment

timelines. The statistical results may prove beneficial to USAF supply and senior leaders

in helping understand how to better reduce the service’s logistical footprint while

maintaining high levels of operational capability. More importantly, it is hoped that the

50

results form a foundation and provide validity towards inventory reduction policies in

future contingencies.

51

3. Case Study

Evaluation of Inventory Drawdown Policies for Balad AB

3.1 Introduction

 “Our biggest challenge was getting the mission done – defending the base,
providing top cover for U.S. Forces-Iraq and assisting our Iraqi hosts – while
simultaneously drawing down our Airmen and equipment.”

Brigadier General Kurt Neubauer
332 Air Expeditionary Wing
Commander

The year of 2011 marked significant changes in the operations of the United

States Air Force. On August 1, 2011, the United States Congress passed the Budget

Control Act of 2011, mandating $487 billion dollars in defense budgetary cuts. On

December 16, 2011 the United States Air Force (USAF) flew its final sortie over the

country of Iraq. While the budgetary cuts didn’t immediately impact operations in Iraq, it

strengthened the USAF’s resolve to maintain readiness while becoming fiscally

responsible. The quandary of maintaining the highest levels of support within tight

budgets is a constant burden under which today’s supply chains operate. It is also an

issue that the Department of Defense, and subsequently the USAF, will surely face within

the coming years as military forces are withdrawn from Afghanistan. While a majority of

the operational Air Force is still engaged in combat operations over Afghanistan, the Air

Force Logistics Management Agency (AFLMA) was tasked by the commander of the

USAF’s Global Logistics Center (GLSC) to study how well the supporting supply chain

performed in sustaining operations while decreasing inventories at the conclusion of its

mission in Iraq. Specifically, AFLMA was asked to document the process and measure

the success of the current drawdown effort at Balad Air Base AB. These lessons learned

52

would then be used for subsequent drawdown efforts. To gain a baseline for what

AFLMA was tasked to study, some background must be given on the methodologies

implemented at Balad AB to reduce its inventory before the closing of the base.

In the years 2010-2011, Balad AB underwent a transition from a contingency base

operating on sustainment stock levels to an expeditionary base operating out of RSPs

until it was ultimately transferred back to the nation of Iraq. Balad AB had been

operating with normal peacetime levels of stock, to include inventory in both a primary

operating stock (POS) and in readiness spares kits (RSPs), as studies in the past had

shown that aircraft supportability at contingency base locations improved when

additional levels of stock were applied over and above stock levels contained in RSPs

(Hunt, 2011). A plan to reduce stock over 14 months was developed by the GLSC that

aimed at gradually reducing stock levels by applying a scaling factor to an item’s daily

demand rate (DDR) (Fulk D. A., Balad Levels Drawdown Plan, 2011). The goals behind

this plan were threefold: ensure the preservation of equipment accountability, maximize

weapon system availability to the very end of operations, and support an efficient and

effective base closure effort (Fulk D. A., Balad Levels Drawdown Plan, 2011). As the

plan progressed, on hand stock and item stock levels decreased as an item’s DDR

decreased.

 In early 2011, Air Force Central Command (AFCENT), with Air Staff

concurrence, issued a directive a change to the inventory drawdown plan on non-mission

capable (MIC) 1 consumable items and MIC 1 consumable items with zero on-hand

balances (Fulk D. A., Balad Levels Drawdown Plan, 2011). The directive zeroed out

stock levels in the warehouse by overriding the items’ computed stock levels with the

53

establishment of maximum adjusted stock levels (ASLs). Maximum ASLs act as a

ceiling on item stock levels by restricting stock to no more than a specified amount

(DAF, 2011). The establishment of a maximum ASL with a value of zero caused the

USAF supply system to not stock any additional quantities of the item above what was

stocked in the RSP.

 Ample research exists on how to maintain inventory levels under increasing

demand over infinite time horizons. In contrast to maintaining inventory support over an

infinite horizon, a small number of studies in the past have been conducted focusing on

inventory replenishment under the conditions of decreasing demand and finite horizons.

These studies have focused on achieving optimal levels of inventory with mathematical

models on products whose market demand has diminished due to obsolescence or whose

product life cycle is fixed and experiences deterioration. Barbosa and Friedman (1979)

were a few of the first authors to explore this topic as they addressed the phasing out of

electronic products in technology markets under the assumptions of a finite time horizon

and demand function of time that eventually reaches zero. Other studies explore differing

demand trends such as exponentially declining demand (Ramani and Venkatraman, 1988;

Hill, Smith and Omar, 1998;) and linear decrease in demand (Zhao, Yang and Rand,

2000). Although very applicable to increasing our knowledge of how to address

inventory replenishment under decreasing demand, these studies can prove complicated

for decision makers. Little (2004) suggests that for a model to be of any use to a decision

maker it should be simple, robust, easy to control and adaptable to different situations.

The inventory situation experienced during Balad AB’s closure provides a unique

opportunity to investigate inventory reduction methods. It also provides an opportunity

54

to apply simulation methods as the USAF supply system is complex and alternative

designs of inventory reduction policies require analysis (Carson II, Introduction to

Modeling and Simulation, 2005). This research develops an agent-based simulation

model that can be used to study the differing inventory policies under differing factors.

Moreover, this research aims at providing a foundation for inventory reduction for future

closings of existing contingency locations.

3.3 Supply Chain Inventory Reduction Simulation

 This research develops an agent-based simulation model of the sustainment

supply chain supporting Balad AB during its closure using the software AnyLogic®. The

developed simulation models inventory within both a POS and RSP source of stock.

Within the model, four inventory management processes are patterned over time

to gain an overall understanding of what factors significantly affect the topic of interest –

the manner in which the inventory of a contingency operating base should be reduced

back to expeditionary levels. The first process conceptualizes how demands are placed

on the supply chain at the air base. The second process of the model represents the

processing and fulfilling of customer demands by supporting POS and RSP inventories.

The third process abstracts the logic of inventory management computations which

underpin the management of USAF inventory. Finally, the fourth process generalizes the

resupply of inventory levels at the deployed operating base. Figure 7 provides a

graphical depiction of the four processes.

3.3.1 Model Development

55

Figure 6. Core Inventory Management Processes

To simulate demand generation at a contingency base, various demand

measurements for certain items were gathered from Balad AB’s item record through the

Logistics Installations and Mission Support-Enterprise View (LIMS-EV) as well as

historical supply transaction data obtained from the AFLMA. Rather than generalizing

demand parameters for multiple stock units, the demand factors of daily demand

frequency rate (DDFR), DDR, and variance of demand (VOD) are used as inputs to an

exponential and negative binomial distribution. The exponential distribution is used to

model demand interarrival times, while the negative binomial distribution is used to

model demand sizes.

Previous research has focused on non-MIC 1 items, but in this research focus is

given on MIC-1 items. The management of backorders in the USAF supply system

amounts to basic ABC inventory management methods in that backorders are managed in

a fashion where certain parts are given more attention than others. Those parts that

receive a majority of attention in the USAF inventory are those parts that cause aircraft to

56

become inoperable and are coded as MIC 1 items. A hypothesis of this research is that

what truly matters in the reduction of inventory at a contingency location is not whether

the part is a MIC 1 or non-MIC 1 part, but the part’s demand characteristics such as

DDFR and DDR. The acceptance or rejection of this hypothesis should not be accepted

as a recommendation to change the management of MIC-1 items, but it provides a

suggestion that the focus of inventory redeployment efforts should be on an item’s

demand characteristics.

To study the various inventory reduction methods on MIC 1 consumable items the

research and developed modeled focused on two parts, supported by F-16 RSP levels,

that varied in cost, demand frequency, demand size and demand variance. One part was

selected out of a category of parts identified has having a high demand rate and high unit

price, while the other part was selected out of a category of parts identified has having a

high demand rate and low unit price. Past research has indicated that parts of low

demand rates fail to provide ample data for analysis. Each part’s demand factors and unit

price were within one standard deviation of the factor’s mean for the item record, dated

25 March 2011, of stock units at Balad AB. The variation in unit price is required to

understand how the demand for low cost parts affects an inventory model’s behavior

compared to the demand of a high-cost part. The two parts modeled in the simulation are

listed in Table 10.

Table 10. Listing of Selected Parts

Item NSN Nomenclature DDFR DDR VOD Unit Price
1 2620-01-490-0713 RBL: TIRE F-16 ACFT DESERT USE 0.0758 1.0944 16.89 $1,723.92
2 5330-00-631-6649 SEAL PLAIN 0.0259 0.5611 32.49 $1.32

57

To provide a reasonable context under which to model drawdowns of inventory at

a contingency location, the following assumptions were made:

• Data obtained through AFLMA, the GLSC, and LIMS-EV is accurate and

complete.

• Demand interarrival times are assumed to be an exponentially distributed function

of the item’s DDFR divided by a denominator equal to the average amount of

aircraft flying sorties from Balad AB on 25 Mar 2011.

• Demand size is assumed to be distributed according to the negative binomial

function with a variance calculated using the VOD formula specified by AFMAN

23-110.

• RSP demand levels are non-demand based and POS levels are demand based.

The RSP levels do not represent the actual levels of the items in RSP kits at Balad

AB, but are modeled to provide a sense of realism in the model.

• Bench stock is not modeled and assumed part of the POS inventory.

• No cannibalization, lateral resupply or local sourcing of parts. All parts are

sourced from the designated source of supply.

• No commonality exists among parts for different weapon systems.

• Delays for inbound transportation of stock are modeled at two levels, but no delay

exists for transportation of stock off base.

• RSPs are filled with any excess items from the POS inventory during the

drawdown phase of the base.

• RSPs remain at the contingency location until the end of the drawdown.

58

• No gaps in time between deployment of like MDSs at the location.

• A finite planning horizon that ends with date specified for the withdrawal of U.S.

forces from Iraq.

To substantiate a model within its domain of applicability and provide a high degree

of accuracy in its results, validation and verification of the model has to be performed

(Sargent, 2007). Since the simulation attempted to understand general inventory policy

behavior under different conditions and the policies under study had varying life spans,

validation and verification took the form of discussion with AFMC supply analysts and

output comparisons of model results to real-world analytical tools. Additionally, certain

replication outputs were compared to the stock unit’s item record to ensure that the model

reasonably produced demand at a frequency and rate comparable to the actual situation

faced at Balad AB.

3.3.2 Model Validation and Verification

Twenty-four aircraft are modeled as agents who generate demand based on a negative

binomial distribution using the inputs of an item’s DDFR, DDR, VOD and unit price.

Previous study results indicate comparable trends of supply support among varying fleet

sizes. Generation of demands for two modeled parts drive the system’s underlying

demand leveling methodologies of Economic Order Quantity (EOQ) depth or Customer

Oriented Leveling Technique (COLT) leveling. The EOQ depth model is based on

Wilson’s EOQ methods of achieving the lowest total cost in inventory, while the COLT

3.3.3 Model Execution

59

methodology minimizes backorders and customer wait time under a marginal analysis

approach (Gaudette, Blazer, & Alcorn, Managing Air Force Depot Consumables: The

Big Picture, 2001). These methods calculate demand levels for each part which then

determine when replenishment orders are processed in the model. Figure 8 presents a

graphical representation of inventory behavior over time during a replication run of the

model. Upon a pre-defined timestamp, the model reduces inventory either gradually by

using a linearly decreasing function of the item’s DDR or abruptly through the setting of

a maximum ASL value of zero.

Figure 7. Model Behavior of Inventory Level over Time

 The model is run over a simulated period of two and a half years per replication.

For each scenario or inventory policy we performed 31 replications to satisfy the

assumptions of independence and normality. Initialization periods and data collection

periods were pre-specified during the model initialization. To achieve commonality

between the plans of interest, the period of analysis was defined to a period between 31

March 2011 and 31 December 2011. This date corresponded with the timeframe that

AFCENT directed setting the maximum ASL values on certain item’s to zero.

60

3.4 Analysis

 This section provides the analysis of our model’s output when populated with

parts of differing demand arrival and consumption rates.

 Two responses of interest were identified for study in this model – an item’s

customer wait time (CWT) and percentage of returnable inventory. Both measures of

interest were calculated as a long-run average over the model’s data collection period.

CWT is readily accepted DoD supply performance metric and can be defined as the

average amount of time that a customer has to wait for a backordered part. The CWT of

an item can be defined as the expected backorders (EBO) divided by an item’s DDR

((DAF), 2002).

3.4.1 Experimental Design

𝑪𝑾𝑻 = 𝑬𝑩𝑶/𝑫𝑫𝑹 (3.1)

The percent of returnable inventory is a measure more commonly used in profit-

oriented business , but has use in cost-oriented companies, such as the USAF, that want

to know what proportion, in dollars, of its inventory can be returned to its suppliers

(Bragg, 2004). Using a metric such as this requires some manipulation for the study’s

purpose. The basic formula for this measure is provided in equation 4.

% 𝒐𝒇 𝑹𝒆𝒕𝒖𝒓𝒏𝒂𝒃𝒍𝒆 𝑰𝒏𝒗𝒆𝒏𝒕𝒐𝒓𝒚 = 𝑫𝒐𝒍𝒍𝒂𝒓𝒔 𝒐𝒇 𝒓𝒆𝒕𝒖𝒓𝒏𝒂𝒃𝒍𝒆 𝒊𝒏𝒗𝒆𝒏𝒕𝒐𝒓𝒚
𝑻𝒐𝒕𝒂𝒍 𝒅𝒐𝒍𝒍𝒂𝒓𝒔 𝒐𝒇 𝒊𝒏𝒗𝒆𝒏𝒕𝒐𝒓𝒚

 (3.2)

Applying the measure to the focus of this study, we manipulate the equation to the

following formula.

% 𝒐𝒇 𝑹𝒆𝒕𝒖𝒓𝒏𝒂𝒃𝒍𝒆 𝑰𝒏𝒗𝒆𝒏𝒕𝒐𝒓𝒚 = 𝑻𝑪(𝑶𝑯 𝑷𝑶𝑺)
𝑻𝑪 (𝑶𝑯 𝑷𝑶𝑺)+𝑻𝑪(𝑶𝑯 𝑹𝑺𝑷)

 (3.3)

61

where TC(OH POS) is the total cost of on-hand stock in the primary operating stock and

TC(OH RSP) is the total cost of on-hand stock in the RSP. The total cost of on-hand

stock is defined as the unit price of each item plus its holding cost and ordering cost.

The measures of interest were analyzed under the effect of different inventory

policies and aircraft redeployment timeline and rates. Inventory policy factors include

ordinal factors that identify the two plans used at Balad AB – setting a maximum ASL

value to zero or the reduction of stock as a linear function of the item’s DDR. Aircraft

redeployment timelines were the ordinal factors of 6 and 12 months. It is during this

timeline that the 24-ship fleet would be deleted from the model in whole integers (4 ships

per month for a 6 month redeployment and 2 ships per month for a 12 month

redeployment). CWT analysis is provided in the form of a full-factorial 22 experiment

while the percentage of returnable inventory analysis, due to violations of normality and

equal variances, was conducted using the non-parametric Kurskal-Wallis (K-W) test with

post-hoc analysis generated by the Mann-Whitney U test.

 Responses for each treatment level were based on the outputs of individual Monte

Carlo experiments run over 31 replications. The use of Monte Carlo experiments ensured

the generation of independent samples, while the number of replications satisfies the

sample size requirements of the Central Limit Theorem (Vogt, 2005). Each replication

was run for 2 and 1/2 years of simulated operations time with the first 21 months of data

deleted. The lengthy initialization period is required to stabilize the long-run average

calculations of the simulated USAF supply system. A data collection period of 9 months

3.4.2 Results

62

was programmed to coincide with the amount of time for which the policy of instituting

maximum adjusted stock levels was implemented at Balad AB.

 Due to the marginal analysis COLT technique an insignificant amount of CWT

data for part 2 was generated, so we utilize the data for part 1 to determine the differing

factor level effects. The Shapiro-Wilk test for normality of each treatment proved

significant as indicated in Table 11. Levene’s test for equality of variance indicated

equal variances with a p-value of 0.3060.

Table 11. Shapiro-Wilk Test for Normality of CWT Response

Treatment
No. Inventory Policy Drawdown Timeline p-value
1 Max ASL = 0 6 months 0.2259
2 Max ASL = 0 12 months 0.2108
3 EDQ 6 months 0.1658
4 EDQ 12 months 0.3352

Analysis of the full factorial 22 design of experiment was produced using Analysis

of Variance (ANOVA) techniques which indicated the model was statistically significant,

(p<0.0001), with all main effects and second-order effect statistically significant as well

(p <0.0001). Post hoc analysis conducted with Tukey’s Honestly Significant Difference

test (see Figure 9) indicate the CWT response values are significantly different when

maximum ASLs are implemented over longer redeployment timeframes. We can

interpret these results as CWT increases under an inventory policy of maximum ASLs

supporting lengthy deployments. Additionally, this test revealed no significant difference

CWT values over both drawdown timelines under an EDQ policy and a 6-month

drawdown timeline under an ASL policy. In interpreting these results, one has to

remember that the definition of CWT is the average amount of time a customer has to

63

wait for a backorder part. These results imply that an EDQ policy over both short and

long redeployment timelines would produce a CWT value similar to the value obtained

under a maximum ASL policy for a 6-month drawdown. It can be inferred that an EDQ

policy, whether implemented for a short or long drawdown timelines, is a better strategy

than a maximum ASL strategy for any drawdown timeline. These results are likely as the

use of a maximum ASL value is somewhat of a speculation strategy in that it is assumes

future demand amounts will not exceed the stock on-hand in the RSP. Finally, it should

be noted that these results are for only two-parts due to model design. In reality, USAF

weapon systems are supported by hundreds of consumable parts. It can be reasonably

assumed that the modeling of additional parts would lead to the same general results – the

EDQ plan would provide lower CWT than the ASL plan no matter the number of parts

studied.

Figure 8. Summary of Tukey’s HSD Analysis of Customer Wait Time

 A single K-W test was performed for each part modeled in the simulation to

evaluate the differences among the inventory policies on the median change in average

percentage of returnable inventory. The K-W test for part 1 was significant, (p <

0.0001), as was the K-W test for part 2, (p < 0.0001). Post hoc testing to evaluate the

pairwise differences between each grouping of inventory policy and drawdown timeline

was conducted using the Mann-Whitney U test with a Bonferroni approach in controlling

64

for Type I errors with a family-wise error rate of 0.05. The results of the pairwise tests in

Table 12 indicate significant differences amongst the different comparisons.

Table 12. Mann-Whitney U Test Results for Percentage of Returnable Inventory

Response Design Point -Design Point p-value

Part 1 - % of
Returnable
Inventory

6-Months/EDQ 12-Months/Max ASL 0.0011*
6-Months/Max ASL 12-Months/Max ASL 0.0025*
6-Months/Max ASL 6-Months/EDQ 0.8992
6-Months/Max ASL 12-Months/EDQ 0.0001*
6-Months/EDQ 12-Months/EDQ 0.0001*
12-Months/Max ASL 12-Months/EDQ 0.0001*

Part 2 - % of
Returnable
Inventory

6-Months/EDQ 12-Months/Max ASL 0.0001*
6-Months/Max ASL 12-Months/Max ASL 0.0001*
6-Months/Max ASL 6-Months/EDQ 0.8327
12-Months/Max ASL 12-Months/EDQ 0.0001*
6-Months/EDQ 12-Months/EDQ 0.0001*
6-Months/Max ASL 12-Months/EDQ 0.0001*

* - Statistically significant at α*=0.0083

The varied results of the Mann-Whitney U test do not make for intuitive

conclusions, but there are a few insights that can be drawn by using this information in

combination with the information obtained from the analysis of the CWT response. The

first insight is that for part 1 the inventory policy of EDQ when compared to an inventory

policy of maximum ASLs under the same drawdown timeline not only maintained a low

CWT metric, but it did so while retaining the least amount of stock possible at a

statistically significant level. The same inference can be made regarding part 2, even

though we didn’t evaluate the measure of CWT but that was because it computed to less

than two decimal places.

The second insight that can be gleaned from the non-parametric K-W test is that

the EDQ policy does lag in performance over longer drawdown timelines. This inference

65

can be made when viewing the results of those tests that compare the EDQ inventory

policy over different drawdown timelines. This result is consistent with the logic

programmed in the model since the EDQ plan is a function of an item’s DDR which is

equivalent to an 18-month moving average. The EDQ plan supporting a 12-month

drawdown would not begin to bring levels down until the final months of the drawdown

as indicated by the higher mean in the K-W test. A feasible suggestion regarding this

insight is to compute an item’s DDR over a smaller window as the contingency’s

conclusion becomes more imminent. This suggestion, though, has to be weighed with the

costs associated with managing such a plan under changing conditions.

3.5 Conclusions

 This model and analysis explored the impacts of the differing inventory policies

supporting various redeployment rates of supported aircraft. Two inventory policies were

studied – setting of a maximum adjusted stock level to a value of zero or the linear

reduction of stock as a function of an item’s DDR. The intent of this study was to gain

further insight on which plan may better support the closure of contingency base while

maintaining adequate levels of supply support to the warfighter. The results provided

significant differences and insights between the two plans. The further examination of

these two plans will aid in a conclusive strategy for future contingency base closures.

66

4. Conclusion

4.1 Introduction

 This chapter provides a summary of the research performed during the course of

examining the performance of different inventory policies supporting different fleet sizes

undergoing varying rates of redeployment. The chapter begins with a general overview

of the thesis, followed by the findings and conclusions derived from the analysis of our

simulation model’s output data. The chapter concludes by providing a list of topics

encountered during the course of this research that would be suitable for future study.

4.2 Research Summary

 This focus of this study was to develop an agent-based simulation to evaluate

different inventory reduction plans that could be used to decrease inventory at bases

operating in a contingency location. The fundamental inventory management processes

of USAF consumables were programmed and historical data was used to generate

stochastic demands. Constraining assumptions were made to bind the model and

programming logic in a fashion suitable for analysis. While agent-based modeling has

been available for use during the past two decades, this model provides a novel approach

and a broader understanding of factors affecting supply support in wartime environments

not previously researched.

 Furthermore, an additional examination was provided on how support to MIC 1

coded items could be affected with various inventory reduction plans. This analysis was

67

conducted using customer wait time as a measurement. As this research addresses only a

few approaches to studying supply support at contingency locations, many other

approaches and factors should be studied to ascertain a higher degree of fidelity on

different supply support plans and inventory management policies for future contingency

base closures.

4.3 Summary of Findings

 In this section, the basic research questions posed in Chapter 1 will be addressed

based on the analysis of data provided in Chapters 2 and 3. The questions from Chapter 1

are:

1. Should drawdowns, at the system level, of inventory at contingency locations be
treated any differently than the redistribution of excess inventory at peacetime
locations?

 This question simply asks if basing an inventory drawdown plan off of an item or

group of item’s DDR is better suited to drawing down assets and asset levels versus using

the MCDDR technique described in AFMAN 23-110, Volume 2, Part 2, Chapter 19.

There exists an inherit difference between the plan developed by GLSC and the formula

for MCDDRs and MCDDFRs – the use of sortie information. While the developed

model did not explicitly utilize sortie information as an input or output parameter, the

long-run behavior of each replication did provide some insight into the reduction of stock

as a function of the DDR. Long-run behavior indicated that reducing stock as a function

of the DDR suffers from performance lags when the basic DDR formula from AFMAN

23-110 is utilized. Since the basic formula is an essentially an 18-month moving average

this behavior should be expected. In contrast, using the DDR to drive the decrease of

68

inventory levels creates a flexible plan that not only reduces stock but also maintains high

customer support levels. This point was alluded to by the GLSC when their plan for the

Balad AB closure was developed (Fulk D. A., Balad Levels Drawdown Plan, 2011).

Further testing is required to determine if the reduction of stock as a function of the DDR

would perform any better than using the basic MCDDR and MCDDFR formulas in

AFMAN 23-110.

2. Is there a statistical and/or practical difference among policies for reducing
inventory levels in the final phases of a contingency operation?

 The results of Chapter 2 and 3 indicate that there is a statistical difference

between the two policies enacted at Balad AB. According to statistical tests, the use of

maximum ASLs is more likely to increase the median and mean number of backorders

and backorder quantities. Also, these tests indicate that the plan developed by the GLSC

would minimize total backorders and backorder amounts over both 6-month and 12-

month redeployment timelines. The model’s behavior indicates a practical significance

among the differing policies in that use of maximum ASL, no matter the type of item, is

somewhat of a speculation strategy in that we expect future demands to be no more than

on-hand asset quantities contained within the RSPs. According to the model’s behavior

and output, this strategy is found lacking in support to aircraft fleets undergoing shorter

redeployments.

3. What are appropriate measures to be used in evaluating policies for drawdown
of inventory in a contingency environment?

 The results of the study indicate that the answer to this question is a mix of

metrics. The use of CWT throughout the redeployment is still a requirement as

69

operations may have to be maintained up until the final day. The study has found that a

formula based on unused inventory remaining may provide a leading indicator of how

well the USAF is achieving its objective of closing the base down in a reasonable

fashion. These are only two metrics and their use should be in conjunction with other

supply metrics to form a better picture of the drawdown effort.

4. What parameters should guide inventory drawdowns in future contingency
operations?

This study focused on four parameters – DDFR, DDR, VOD, and unit price. Of

the four, an item’s DDR, VOD and unit price affected inventory behavior the most. DDR

and VOD accounted for the variation in demand sizes generated by the model. Items

with low DDRs and VODs failed to produce any substantial results for this study, while

items with higher DDRs and VODs produced more backorders. Also of interesting note

was that items with lower unit prices performed reasonably better than those with higher

unit prices. This behavior should have been expected as the marginal analysis

methodology used in COLT would rather prevent backorders for a cheaper part than an

expensive part, but the extent to which unit price played a factor was somewhat

astounding. Unit price was the driving factor in the model failing to produce CWT

values for low cost items. In future contingencies, the use of an item’s DDR, VOD and

unit price should be taken into consideration as these three parameters exhibited the

tendency to affect the model’s performance the most.

70

4.4 Future Work

The developed model has been programmed in such a manner that it provides

flexibility for future studies. The number of parameters available for modification

provides opportunities for future studies to explore the impacts of various factors such as

transportation, up-stream supplier stock availability and pertinent pecuniary costs that

affect supply decisions. The capabilities that have already been programmed thus

decrease the time required to adapt the model to other studies. As this model addresses

only a certain type of part – consumables – there are additional areas of expansions that

should be considered. We suggest the following topics:

• The modeling of sorties within the aircraft agent and the subsequent capture of

sorties information generated by the agent.

• The implementation of MCDDR and MCDDFRs based on sortie information.

• The modeling of maintenance information to provide a more realistic picture of

demand interarrival time.

• The parameterization of differing RSP and DLA support levels within the model

could allow for a more representative picture of a contingency supply chain.

• The modeling or more than two parts within the model. The marginal analysis

technique performed by the COLT methodology compares a multitude of parts to

derive levels of stock that minimize the over number of backorders and customer

wait time.

• The modification of the model to include better time-based averages such as

average number of daily backorders.

71

 Substantial opportunities exist for the expansion of this study and future

operations may necessitate an extension of a similar model. The limitations in this model

are solely of the author’s doing, not the methodology or software. Few academic studies

exist that explore inventory replenishment under decreasing demand with even fewer

studies evaluating this topic utilizing agent-based modeling. Additionally, the use of

agent-based models in military research has still not matured to a level of common use.

It is hoped that this simulation model and the subsequent analysis has provided insight

into future inventory reduction plans and the applicability of an agent-based modeling

simulation approach to understanding problems facing the Air Force.

72

Appendix A. Model Descriptions and Default Values

Parameter Description Default Value

Item Unit Price The price per unit of the item. User defined
Item Holding Cost Factor Factor to which is applied to a item’s unit price to

determine its holding cost
15%

Item Holding Cost The cost to hold the stock in inventory. .15 * Unit
Price

Item Demand Rate The item’s daily demand rate. Daily demand rate is
how much of an item is consumed on a daily basis.

User defined

Item Demand Frequency The item’s daily demand frequency rate. Daily
demand frequency rate is the average number of
daily customer demands.

User defined

Item Variance of Demand The expected variation in demands for an item. User defined
SoS Order-Up-To-Level The level of stock to which the SoS’s inventory

should be replenished with each replenishment order.
User defined

SoS Reorder Point The level of stock at which the SoS should place a
replenishment order.

User defined

SoS Stock Availability An item’s stock availability. This factor is used by
the COLT computation model.

User defined

SoS Manufacturer Lead
Time

The time the SoS can expect to receive an item from
their source of supply

User defined

ELRS POS Order-Up-To-
Level

The level of stock to which the ELRS’ POS
inventory should be replenished with each
replenishment order.

User defined

ELRS POS Reorder Point The level of stock to which the ELRS’ POS
inventory should be replenished with each
replenishment order.

User defined

ELRS POS C-Factor A multiplier factor applied to the standard deviation
of demand during replenishment.

User defined

ELRS POS Ordering Cost The cost to the ELRS of issuing a purchase order for
the replenishment of an item’s inventory.

User defined

ELRS POS Order and Ship
Time

Average number of days between the placement and
receipt of a replenishment order between the ELRS
and SoS

User defined

ELRS POS Conditional
Delay (CONDEL)

 User defined

ELRS POS Bench Stock Seventy-five percent of an item’s authorized bench
stock. This factor is used by the COLT computation
model

User defined

ELRS RSP Order-Up-To-
Level

The level of stock to which the ELRS’ RSP
inventory should be replenished with each
replenishment order.

User defined

ELRS RSP Reorder Point The level of stock to which the ELRS’ RSP
inventory should be replenished with each
replenishment order.

User defined

Aircraft Redeployment The date at which aircraft will start to be taken out of User defined

73

Start Date the model. This date simulates the date at which
aircraft would redeploy from the contingency base.

Aircraft MDS Fleet Size The fleet size of the aircraft mission design series
assigned to the contingency base.

User defined

Aircraft MDS Departure
Factor

The factor at which aircraft are taken out of the
model. This factor simulates the number of aircraft
that would redeploy at one time from the contingency
base.

User defined

Inventory Drawdown Start
Date

The date at which the inventory drawdown method is
initiated for the ELRS’ POS.

User defined

Inventory Reduction Plan The plan to be implemented for the inventory
drawdown. The “Set Max ASLs = 0” option
simulates the setting of a maximum adjusted stock
level to a value of zero. The “Set Levels = EDQ”
option simulates setting stock levels on a monthly
basis to a value equal to the daily demand rate times
the number of months remaining times 30 days.

User defined

Inventory Computation
Method

The method by which order-up-to-levels and reorder
points are calculated. The “Base Level (Standard
SLQ)” option calculates order-up-to-levels and
reorder points with the base computations specified
in AFMAN 23-110. The “Centrally (COLT)” option
simulates the calculation of reorder points with the
COLT marginal analysis method.

User defined

ASL – Adjusted Stock Level
COLT – Customer Oriented Leveling Technique
EDQ – Expected Demand Quantity
ELRS – Expeditionary Logistics Readiness Squadron
POS – Primary Operating Stock
MDS – Mission Design Series
SoS – Source of Supply
RSP – Readiness Spares Kit

74

Appendix B. ELRS Receive Demand Process Flow and Java Code

ELRS Receive Demand Process Flow

Capture
demand time
and quantity

Update
DOLD and

Last Demand
Amount

First Demand?

Update
DOFD

Update
Number of
Demands

Update
temporary
values for

CDQ, CDQ2,
and CRD

True

False

Finish
Wait for next

Agent Demand

Determine which
part

Figure 9. ELRS Receive Demand Processing Logic

75

ELRS Receive Demand Process Java Code

//Add agent demand to ELRS history arrays and update demand parameters
//If the demand is for Part 1 - add the demand to the Part 1 history arrays and update
its demand parameters
if(msg.p == 0){

//Add demand and all of its parameters to the p0demand array and add the demand's
time to the p0demandHistory array

 p0demands.addLast(msg);
 p0demandHistory.add(msg.agentDmdTime());

//Update the Date of Last Demand (DOLD) and Last Demand Amount for Part 1
 DOLD[0]=msg.agentDmdTime();
 LastAmount[0]=msg.agentDmdQty();

 //Set text on the main screen
 get_Main().txtp0_DOLD.setText(timeToDate(DOLD[0]));
 get_Main().txtp0_DmdQty.setText(LastAmount[0]);

 //Update the Date of First Demand (DOFD) for Part 1
 update_DOFD(0, msg.agentDmdTime());

 //Update the total number of demands for Part 1.
 ND[0]++;

 //Calculate DDR and Cumulative Demand Values for Part 1
 partStats[partStatsCounter][0] = msg.agentDmdTime();
 partStats[partStatsCounter][1] = msg.agentDmdType();
 partStats[partStatsCounter][2] = msg.agentDmdQty();
 partStatsCounter++;

//If the demand is for Part 2 - add the demand to the Part 2 history arrays and update
its demand parameters
}else if(msg.p == 1){

//Add demand and all of its parameters to the p1demand array and add the demand's
time to the p1demandHistory array

 p1demands.addLast(msg);
 p1demandHistory.add(msg.agentDmdTime());

//Update the Date of Last Demand (DOLD) and Last Demand Amount for Part 2
 DOLD[1]=msg.agentDmdTime();
 LastAmount[1]=msg.agentDmdQty();
 get_Main().txtp1_DOLD.setText(timeToDate(DOLD[1]));
 get_Main().txtp1_DmdQty.setText(LastAmount[1]);

 //Update the Date of First Demand (DOFD) for Part 2
 update_DOFD(1, msg.agentDmdTime());

 //Update the total number of demands for Part 2.
 ND[1]++;

//Calculate Cumulative Demand Values for Part 2 if time() < 365 days
 partStats[partStatsCounter][0] = msg.agentDmdTime();
 partStats[partStatsCounter][1] = msg.agentDmdType();
 partStats[partStatsCounter][2] = msg.agentDmdQty();
 partStatsCounter++;
}

76

Appendix C. ELRS Stock Issue Process Flow and Java Code

ELRS Stock Issue Process Flow

Determine inventory
position

Is POS on-hand balance
greater than 0?

Is POS on-hand balance
greater than or equal to demand

quantity?

Fulfill Complete Order

Issue partial order &
replace original demand
quantity with remaining

demand quantity

Is RSP on-hand balance
greater than 0?

IS RSP on-hand balance
greater than or equal to

demand quantity?

Do nothing with demand
and log as backorder.

Fulfill Complete Order
Issue partial order &

replace original demand
quantity with remaining

demand quantity

Determine inventory
position

TrueFalse

False TrueTrueFalse

False True

Figure 10. ELRS Flowchart of Stock Issue Logic

ELRS Stock Issue Process Java Code

//Check for part 0 demands
void checkp0Demand() {

// Determine Part 1's Inventory Position
inventoryPosition[0] = onHand[0] + onHand_RSP[0] + onOrder[0] - p0backOrders_ELRS();

//Update text on Main AO screen.
get_Main().txtp0InventoryPosition_ELRS.setText((int)inventoryPosition[0]);
get_Main().txtp0OnHand_ELRS.setText((int)onHand[0]);
get_Main().txtp0OnOrder_ELRS.setText((int)onOrder[0]);
get_Main().txtp0BackOrders_ELRS.setText((int)p0backOrders_ELRS());
get_Main().txtp0OnHand_RSP.setText((int)onHand_RSP[0]);

//Output Part identification and inventory status to transaction record.
get_Main().TransactionRecord[1] = 1;

77

get_Main().TransactionRecord[3] = S[0];
get_Main().TransactionRecord[4] = s[0];
get_Main().TransactionRecord[5] = RSP_S[0];
get_Main().TransactionRecord[6] = RSP_s[0];
get_Main().TransactionRecord[7] = inventoryPosition[0];
get_Main().TransactionRecord[8] = onHand[0];
get_Main().TransactionRecord[9] = onHand_RSP[0];
get_Main().TransactionRecord[10] = onOrder[0];
get_Main().TransactionRecord[11] = p0backOrders_ELRS();

while (!p0demands.isEmpty()) { // whileLoop

//Grab the first demand and process it
AgentDemand p0demand = p0demands.getFirst();

//Output the timestamp and quantity of the demand to transaction record
get_Main().TransactionRecord[0] = p0demand.agentDmdTime();
get_Main().TransactionRecord[12] = p0demand.agentDmdQty(); ;

//Check if POS on-hand balance is greater than 0
if (onHand[0] > 0) {
 if (p0demand.q <= onHand[0]) {
 //Fulfill complete order
//Remove the demand from the queue
p0demands.removeFirst();

//Decrease our inventory by the demand amount
onHand[0] -= p0demand.q;

//Add the transaction type, issuing stock and amount issued values to the transaction
record
get_Main().TransactionRecord[2] = 0;
get_Main().TransactionRecord[13] = 0;
get_Main().TransactionRecord[14] = p0demand.q;
 } else {
 //Issue Partial Order

//Decrease demand amount by what there is on the shelf
double p0dmdRemainder;
p0dmdRemainder = p0demand.q - onHand[0];

//Zero out the on-hand inventory
onHand[0] = 0;

//Add the transaction type, issuing stock and amount issued values to the transaction
record
get_Main().TransactionRecord[2] = 1;
get_Main().TransactionRecord[13] = 0;
get_Main().TransactionRecord[14] = p0demand.q - p0dmdRemainder;

//Create a new demand for the remainder of what couldn't be filled out of POS
AgentDemand part0Demand = new AgentDemand(0, p0dmdRemainder, time());
p0demands.set(0, part0Demand);

//Out of stock - stop processing
break;
 }
} else {
 if (onHand_RSP[0] > 0) {
 if (p0demand.q <= onHand_RSP[0]) {
 //Fulfill Complete Order
 //Remove the demand from the queue
p0demands.removeFirst();

//Decrease our inventory by the demand amount
onHand_RSP[0] -= p0demand.q;

78

//Add the transaction type, issuing stock and amount issued values to the transaction
record
get_Main().TransactionRecord[2] = 0;
get_Main().TransactionRecord[13] = 1;
get_Main().TransactionRecord[14] = p0demand.q;
 } else {
 //Issue Partial Order
 //Decrease demand amount by what there is on the shelf
double p0dmdRemainder2;
p0dmdRemainder2 = p0demand.q - onHand_RSP[0];

AgentDemand part0Demand2 = new AgentDemand(0, p0dmdRemainder2, time());
p0demands.set(0, part0Demand2);

//Zero out the on-hand RSP inventory
onHand_RSP[0] = 0;

//Add the transaction type, issuing stock and amount issued values to the transaction
record
get_Main().TransactionRecord[2] = 1;
get_Main().TransactionRecord[13] = 1;
get_Main().TransactionRecord[14] = p0demand.q - p0dmdRemainder2;

//Out of stock - stop-processing.
break;
 }
 } else {
 //Tally BOs
 //Increase the count of backorders for this part
ieBOs[0]++;

//Add the transaction type, issuing stock and amount issued values to the transaction
record
get_Main().TransactionRecord[2] = 2;
get_Main().TransactionRecord[13] = 99;
get_Main().TransactionRecord[14] = 0;

//Out of stock - stop processing
break;
 }
 }

// UpdateVisualControls
if(onHand[0] > 0){
p0onHand_Replicator = onHand[0];
}else if(onHand[0] <= 0){
 p0onHand_Replicator = 0;
}

if(onHand_RSP[0] > 0){
 p0RSPOH_Replicator = onHand_RSP[0];
}else if(onHand[0] <= 0){
 p0RSPOH_Replicator = 0;
}
} // whileLoop

// Determine Part 1's Inventory Position
inventoryPosition[0] = onHand[0] + onHand_RSP[0] + onOrder[0] - p0backOrders_ELRS();

//Update text on main screen
get_Main().txtp0InventoryPosition_ELRS.setText((int)inventoryPosition[0]);
get_Main().txtp0OnHand_ELRS.setText((int)onHand[0]);
get_Main().txtp0OnOrder_ELRS.setText((int)onOrder[0]);
get_Main().txtp0BackOrders_ELRS.setText((int)p0backOrders_ELRS());
get_Main().txtp0OnHand_RSP.setText((int)onHand_RSP[0]);

79

//Set order amount value and time to default values since this isn’t a replenishment
order
get_Main().TransactionRecord[15] = 9999;
get_Main().TransactionRecord[16] = 9999;
get_Main().TransactionRecord[17] = 9999;
get_Main().TransactionRecord[18] = 9999;
get_Main().TransactionRecord[19] = 9999;
get_Main().TransactionRecord[20] = 9999;

String transaction = "";
transaction = format(timeToDate(get_Main().TransactionRecord[0]));

//Capture data on date specified by user
if(time() >= Simulation_MC.CaptureDataStart){
 for(int a = 1; a<= 20; a++){
 transaction += "\\" + get_Main().TransactionRecord[a];
 }
 Collections.addAll(Simulation_MC.TransactionHistory, transaction);
}

for(int j = 0; j <= 20; j++){
 get_Main().TransactionRecord[j] = 0;
}

transaction = "";

return;
}

80

Appendix D. ELRS Receive Shipment Process Flow and Java Code

ELRS Receive Shipment Process Flow

Update Shipment
Receipt Date

Calculate
shipment time

Calculate number
of demands during

OST

Clear shipment
tracking variables

Calculate
VOO

Determine which
part

Determine quantity
to add to RSP
(RSP Delta)

RSP Delta > 0

Add remaining
shipment quantity

to POS

Add total shipment
quantity to POS

Finish

Figure 11. Flowchart of ELRS Receive Shipment Logic

81

ELRS Receive Shipment Process Java Code

//If shipment is for Part 1
if(msg.shipmentType() == 0){

 //Update the shipment receipt date to the current time
 ShipmentReceiptDate[0] = time();

//Update text on the main screen to display the shipment receipt date in date
//format

 get_Main().txtp0ELRSShipmentReceiptDate.setText(timeToDate(ShipmentReceiptDate[0])
);

 //Clear the shipment quantity for next shipment
 get_Main().soS.p0ShipmentQty = 0;

 //Calculate the shipment time.
 ShipmentTime[0] = ShipmentReceiptDate[0] - SoSOrderDate[0];

//Remove all the demands from the p0demands_OST arraylist. These arraylists
//capture demands during OST for tracking.

 p0demands_OST.removeAll(p0demands_OST);

//Calculate the number of demands during O&ST and upate the nD_OST variable with
//that quantity.

 int p0totalElements = p0demandHistory.size();
 int p0demandsOST = 0;

//Look through the part demand history to capture all of the times between the
//Order Date and the Shipment Receipt Date
//This value is equal to all of the demands that happened during the Order and
//Ship Time. Then set nD_OST[0] equal to this count.

 for(int i=0; i < p0totalElements; i++){
if(p0demandHistory.get(i) > SoSOrderDate[0] && p0demandHistory.get(i) <=
ShipmentReceiptDate[0]){

 p0demands_OST.add(p0demandHistory.get(i));
 p0demandsOST++;
 }
 }
 ND_OST[0] = p0demandsOST;

 //Calculate the Variance of Order & Ship Time
 calc_p0VOO();

 //Determine what items and to where to add them to the inventory
 double RSPdelta0;
 RSPdelta0 = RSP_S[0] - onHand_RSP[0];

 //Fill the RSP inventory first
 onHand_RSP[0] += RSPdelta0;

 //Add newly arrived items to POS inventory
 if((msg.q - RSPdelta0) > 0){
 onHand[0] += (msg.q - RSPdelta0);
 }else if(((msg.q - RSPdelta0) = < 0)){
 onHand[0] += 0;
 }

 //Remove expected shipments
 onOrder[0] -= msg.q;

//If shipment is for Part 1
}else if(msg.shipmentType() == 1){

 //Update the shipment receipt date to the current time.
 ShipmentReceiptDate[1] = time();

82

//Update text on the main screen to display the shipment receipt date in //date
format.

 get_Main().txtp1ELRSShipmentReceiptDate.setText(timeToDate(ShipmentReceiptDate[1])
);

 //Clear the shipment quantity for next shipment
 get_Main().soS.p1ShipmentQty = 0;

 //Calculate the shipment time.
 ShipmentTime[1] = ShipmentReceiptDate[1] - SoSOrderDate[1];

//Remove all the demands from the p1demands_OST arraylist. These arraylists
//capture demands during OST for tracking.

 p1demands_OST.removeAll(p1demands_OST);

//Calculate the number of demands during O&ST and update the nD_OST variable with
//that quantity.

 int p1totalElements = p1demandHistory.size();
 int p1demandsOST = 0;

//Look through the part demand history to capture all of the times between the
//Order Date and the Shipment Receipt Date
//This value is equal to all of the demands that happened during the Order and
//Ship Time. Then set nD_OST[1] equal to this count.

 for(int i=0; i < p1totalElements; i++){
if(p1demandHistory.get(i) > SoSOrderDate[1] && p1demandHistory.get(i) <=
ShipmentReceiptDate[1]){

 p1demands_OST.add(p1demandHistory.get(i));
 p1demandsOST++;
 }
 }
 ND_OST[1] = p1demandsOST;

 //Calculate the Variance of Order & Ship Time.
 calc_p1VOO();

 //Determine what items and to where to add them to the inventory
 double RSPdelta1;
 RSPdelta1 = RSP_S[1] - onHand_RSP[1];

 //Fill the RSP inventory first
 onHand_RSP[1] += RSPdelta1;

 //Add newly arrived items to POS inventory
 if((msg.q - RSPdelta1) > 0){
 onHand[1] += (msg.q - RSPdelta1);
 }else if(((msg.q - RSPdelta1) =< 0)){
 onHand[1] += 0;
 }

 //Remove expected shipments
 onOrder[1] -= msg.q;
}

83

Appendix E. ELRS Stock Replenishment Process Flow and Java Code

ELRS Stock Replenishment Process Flow

Determine inventory
position

Determine order amount
 ((POS order-up to level + RSP order-up to level) – inventory position)

Is order quantity greater than 0?

Send order to
Source of Supply

Determine inventory
position

True

False

Do aircraft remain?

Figure 12. Flowchart of ELRS Stock Replenishment Logic

ELRS Stock Replenishment Process Java Code

//Check for orders for part 1
void orderp1FromSoS() {

if(get_Main().aircraft.size() > 0){
// Determine Part 1's Inventory Position
inventoryPosition[0] = onHand[0] + onHand_RSP[0] + onOrder[0] –
p0backOrders_ELRS();

//Update text on Main AO screen.

84

get_Main().txtp0InventoryPosition_ELRS.setText((int)inventoryPosition[0]);
get_Main().txtp0OnHand_ELRS.setText((int)onHand[0]);
get_Main().txtp0OnOrder_ELRS.setText((int)onOrder[0]);
get_Main().txtp0BackOrders_ELRS.setText((int)p0backOrders_ELRS());
get_Main().txtp0OnHand_RSP.setText((int)onHand_RSP[0]);

//Set the initial value of the order
double p0orderQty = (inventoryPosition[0] <= (s[0] + RSP_s[0])) ? ((S[0]
+ RSP_S[0]) - inventoryPosition[0]) : 0; ;

if (p0orderQty > 0) {

 // Send order to SoS
 //Create an order for Part 1 to send to the SoS
ELRSDemand p1ELRSDemand = new ELRSDemand(1, p1orderQty, portSoS);

//Add the order quantity to the arraylist p0orderAmounts for historical
purposes
p0orderAmounts.add(p0ELRSDemand.q);

//Capture the order date into the SoSOrderDate array for Part 1
SoSOrderDate[0] = time();
get_Main().txtp0ELRSOrderDate.setText(timeToDate(SoSOrderDate[0]));

//Update transaction record array with order information for part 1
get_Main().TransactionRecord[0] = SoSOrderDate[0];
get_Main().TransactionRecord[1] = 1;
get_Main().TransactionRecord[2] = 3;
get_Main().TransactionRecord[3] = S[0];
get_Main().TransactionRecord[4] = s[0];
get_Main().TransactionRecord[5] = RSP_S[0];
get_Main().TransactionRecord[6] = RSP_s[0];
get_Main().TransactionRecord[7] = inventoryPosition[0];
get_Main().TransactionRecord[8] = onHand[0];
get_Main().TransactionRecord[9] = onHand_RSP[0];
get_Main().TransactionRecord[10] = onOrder[0];
get_Main().TransactionRecord[11] = p0backOrders_ELRS();
get_Main().TransactionRecord[12] = 9999;
get_Main().TransactionRecord[13] = 9999;
get_Main().TransactionRecord[14] = 9999;
get_Main().TransactionRecord[15] = p0orderQty;
get_Main().TransactionRecord[16] = 9999;
get_Main().TransactionRecord[17] = 9999;
get_Main().TransactionRecord[18] = 9999;
get_Main().TransactionRecord[19] = 9999;
get_Main().TransactionRecord[20] = 9999;

String transaction = "";
transaction = format(timeToDate(get_Main().TransactionRecord[0]));

//Capture data on date specified by user
if(time() >= Simulation_MC.CaptureDataStart){
 for(int a = 1; a<= 20; a++){
 transaction += "\\" + get_Main().TransactionRecord[a];
 }
 Collections.addAll(Simulation_MC.TransactionHistory, transaction);
}

for(int j = 0; j <= 20; j++){
 get_Main().TransactionRecord[j] = 0;
}

transaction = "";

//Track what's on order by saving the order quantity to the array onOrder
(index 0)
onOrder[0] += p0ELRSDemand.q;

//Update the ordering costs for Part 1

85

orderCosts[0] += OrderingCost[0];

//Track the total number of orders for Part 1
numberOfOrders[0]++;

//Track what's on order by saving the order quantity to array onOrder
(index 0)
onOrder[0] += p0ELRSDemand.q;

//Send the order to the SoS
portSoS.send(p0ELRSDemand);

//Clear the order quantity value from the variable p0orderQty for the next
order
p0orderQty = 0;

//Update the ordering costs for Part 1
orderCosts[0] += OrderingCost[0];

//Track the total number of orders for Part 1
numberOfOrders[0]++;
 }

// Determine Part 1's Inventory Position
inventoryPosition[0] = onHand[0] + onHand_RSP[0] + onOrder[0] –
p0backOrders_ELRS();

//Update text on main screen.
get_Main().txtp0InventoryPosition_ELRS.setText((int)inventoryPosition[0]);
get_Main().txtp0OnHand_ELRS.setText((int)onHand[0]);
get_Main().txtp0OnOrder_ELRS.setText((int)onOrder[0]);
get_Main().txtp0BackOrders_ELRS.setText((int)p0backOrders_ELRS());
get_Main().txtp0OnHand_RSP.setText((int)onHand_RSP[0]);

}

return;
}

86

Appendix F. ELRS Ship Excess Stock Process Flow and Java Code

ELRS Ship Excess Stock Process Flow

Determine inventory
position

Closure method specified?

Determine inventory
position

True

False

POS On-hand >
Order-Up-To-Level? TrueFalse

Fill RSP and then ship
excess POS stock

Figure 13. Flowchart of ELRS Ship Excess Stock Logic

ELRS Ship Excess Stock Process Java Code

//Check for excess stock of Part 1
void shipp0FromELRS() {

 // Determine Part 1's Inventory Position

inventoryPosition[0] = onHand[0] + onHand_RSP[0] + onOrder[0] -
p0backOrders_ELRS();

//Update text on Main AO screen.
get_Main().txtp0InventoryPosition_ELRS.setText((int)inventoryPosition[0]);
get_Main().txtp0OnHand_ELRS.setText((int)onHand[0]);
get_Main().txtp0OnOrder_ELRS.setText((int)onOrder[0]);
get_Main().txtp0BackOrders_ELRS.setText((int)p0backOrders_ELRS());
get_Main().txtp0OnHand_RSP.setText((int)onHand_RSP[0]);

87

//Is closure method set?
if ((Simulation_MC.ClosureMethod != 0 && time() >
Simulation_MC.InventoryDrawdownStart))

 if (onHand[0] > S[0]){
 // Fill RSP and then ship excess POS stock
 //Update get_Main().TransactionHistory w/order

get_Main().TransactionRecord[0] = time();
get_Main().TransactionRecord[1] = 1;
get_Main().TransactionRecord[2] = 4;
get_Main().TransactionRecord[3] = S[0];
get_Main().TransactionRecord[4] = s[0];
get_Main().TransactionRecord[5] = RSP_S[0];
get_Main().TransactionRecord[6] = RSP_s[0];
get_Main().TransactionRecord[7] = inventoryPosition[0];
get_Main().TransactionRecord[8] = onHand[0];
get_Main().TransactionRecord[9] = onHand_RSP[0];
get_Main().TransactionRecord[10] = onOrder[0];
get_Main().TransactionRecord[11] = p0backOrders_ELRS();
get_Main().TransactionRecord[12] = 9999;
get_Main().TransactionRecord[13] = 9999;
get_Main().TransactionRecord[14] = 9999;
get_Main().TransactionRecord[15] = 9999;
get_Main().TransactionRecord[16] = 9999;
get_Main().TransactionRecord[17] = onHand[0];
get_Main().TransactionRecord[18] = 9999;
get_Main().TransactionRecord[19] = 9999;
get_Main().TransactionRecord[20] = 9999;

String transaction = "";
transaction = format(timeToDate(get_Main().TransactionRecord[0]));

//Capture data on date specified by user
if(time() >= Simulation_MC.CaptureDataStart){

 for(int a = 1; a<= 20; a++){
transaction += "\\" +
get_Main().TransactionRecord[a];

 }

Collections.addAll(Simulation_MC.TransactionHistory,
transaction);

}

for(int j = 0; j <= 20; j++){
 get_Main().TransactionRecord[j] = 0;

}

transaction = "";

//Calculate how much needs to be stock in RSP to bring on-hand
levels up to RSP Order-Up-To-Level
int p0RSPDelta = (int)RSP_S[0] - (int)onHand_RSP[0];
//If POS On-hand quantity is greater than what needs to be filled
//in the RSP, fill the RSP and then subtract that quantity from the
//POS On-hand quantity
//Ship the remaining on-hand
if(p0RSPDelta <= (int)onHand[0]){

 onHand_RSP[0] += p0RSPDelta;
 onHand[0] -= p0RSPDelta;
 onHand[0] = 0;

//If the POS On-hand quantity is less than what needs to be filled
//in the RSP, then fill the RSP with the entire POS on-hand
//quantity
}else if(p0RSPDelta > (int)onHand[0]){

 onHand_RSP[0] += onHand[0];
 onHand[0] = 0;

}

88

//Set date for POSStockZeroDate
Simulation_MC.POSStockZeroDate[0] = time();

}
 }

 // Determine Part 1's Inventory Position

inventoryPosition[0] = onHand[0] + onHand_RSP[0] + onOrder[0] -
p0backOrders_ELRS();

//Update text on Main AO screen.
get_Main().txtp0InventoryPosition_ELRS.setText((int)inventoryPosition[0]);
get_Main().txtp0OnHand_ELRS.setText((int)onHand[0]);
get_Main().txtp0OnOrder_ELRS.setText((int)onOrder[0]);
get_Main().txtp0BackOrders_ELRS.setText((int)p0backOrders_ELRS());
get_Main().txtp0OnHand_RSP.setText((int)onHand_RSP[0]);

 return;
 }

89

Appendix G. SoS Receive ELRS Demand Process Flow and Java Code

SoS Receive ELRS Demand Process Flow

Which Part?

Finish

Add Part 1 demand to
queue for processing

Part 1

Add Part 2 demand to
queue for processing

Part 2

Figure 14. Flowchart of SoS Receive ELRS Demand Logic

SoS Receive ELRS Demand Process Java Code

//Determine what part is demanded and then add the demand (replenishment order) to its
//appropriate queue for processing by the SoS Stock Issue Process
if(msg.p == 0){
 p0ELRSDemands.addLast(msg);
} else if (msg.p == 1){
 p1ELRSDemands.addLast(msg);
}

//Check for additional ELRS demands (replenishment orders)
checkp0ELRSDemands();
checkp1ELRSDemands();

90

Appendix H. SoS Stock Issue Process Flow and Java Code

SoS Stock Issue Process Flow

Determine inventory
position

Is part’s on-hand balance
greater than 0?

Is on-hand balance greater than
or equal to demand quantity?

Fulfill Complete OrderIssue available stock and
place order with supplier

Determine inventory
position

True

False True

Place order with supplier

False

Figure 15. Flowchart of SoS Stock Issue Logic

SoS Stock Issue Process Java Code Example

//Check for part 1 orders
void checkp0ELRSDemands() {

// Determine Part 1's Inventory Position
//Update the current inventory position
inventoryPosition[0] = onHand[0] + onOrder[0] - p0backOrders_SoS();

//Update text on main screen.
get_Main().txtp0InventoryPosition_SoS.setText((int)inventoryPosition[0]);
get_Main().txtp0OnHand_SoS.setText((int)onHand[0]);
get_Main().txtp0OnOrder_SoS.setText((int)onOrder[0]);
get_Main().txtp0BackOrders_SoS.setText((int)p0backOrders_SoS());

while (!p0ELRSDemands.isEmpty()) {

ELRSDemand p0ELRSDemand = p0ELRSDemands.getFirst() ;
if (onHand[0] > 0) {

 if (p0ELRSDemand.q <= onHand[0]) {

91

 // Ship complete order
 //initiate shipment

Shipment p0shipment = new Shipment(0,
p0ELRSDemand.q);

if(Simulation.SLQ_calculation == 0){
 create_P0Delivery(OST[0] * day(),
p0shipment)
}else if(Simulation.SLQ_calculation == 1){

if(random() >= SA[0]){
create_P0Delivery(OST[0] * day(),

p0shipment);
}else if (random() < SA[0]){

create_P0Delivery((CONDEL[0] * day()) +
(OST[0] * day()), p0shipment,
p0ELRSDemand.destination);

 }
}

 }

//Update the ship date and quantity variables
ShipmentDate[0] = time();
p0ShipmentQty = p0shipment.q;

//Update main screen information
get_Main().txtp0SoSShipmentDate.setText(timeToDate(ShipmentDate[0]));

//Decrease inventory level by quantity shipped
onHand[0] -= p0ShipmentQty;

//Remove the order from the queue
p0ELRSDemands.removeFirst();

 } else {

 // Ship partial order
 //Decrease demand amount by what there is on the shelf

double p0IssueRemainder;
p0IssueRemainder = p0ELRSDemand.q - onHand[0];
//Initiate shipment
Shipment p0shipment = new Shipment(0, onHand[0]);

if(Simulation.SLQ_calculation == 0){
 create_P0Delivery(OST[0] * day(), p0shipment);
}else if(Simulation.SLQ_calculation == 1){

if(random() >= SA[0]){
create_P0Delivery(OST[0] * day(),

p0shipment);
}else if (random() < SA[0]){

create_P0Delivery((CONDEL[0] * day()) +
(OST[0] * day()), p0shipment,
p0ELRSDemand.destination);

}
 }

 }

//Zero out the on-hand inventory
onHand[0] = 0;

//Create a new demand for the remainder of what couldn't be filled out of
stock
ELRSDemand p0ELRSDemandRemainder = new ELRSDemand(0, p0IssueRemainder,
portELRS);
p0ELRSDemands.set(0, p0ELRSDemandRemainder);

//Out of stock - stop-processing.
break;
 } else {

92

 // Place order with supplier
 break;
 }

// UpdateVisualControls
p0OnHand_Replicator = onHand[0];

}

// Determine Part 1's Inventory Position
//Update the current inventory position
inventoryPosition[0] = onHand[0] + onOrder[0] - p0backOrders_SoS();

//Update text on main screen
get_Main().txtp0InventoryPosition_SoS.setText((int)inventoryPosition[0]);
get_Main().txtp0OnHand_SoS.setText((int)onHand[0]);
get_Main().txtp0OnOrder_SoS.setText((int)onOrder[0]);
get_Main().txtp0BackOrders_SoS.setText((int)p0backOrders_SoS());

return;
}

93

Appendix I. SoS Stock Replenishment Process Flow and Java Code

SoS Stock Replenishment Process Flow

Determine inventory
position

Determine purchase amount
 (order-up-to-level – inventory position)

Is purchase amount greater than 0?

Process purchase from
Supplier

Determine inventory
position

True

False

Figure 16. Flowchart of SoS Stock Replenishment Logic

SoS Stock Replenishment Process Java Code Example

//Send order for part 1 to supplier
void orderP0() {

// Determine Part 1's Inventory Position
//Update the current inventory position
inventoryPosition[0] = onHand[0] + onOrder[0] - p0backOrders_SoS();

//Update text on main screen.
get_Main().txtp0InventoryPosition_SoS.setText((int)inventoryPosition[0]);
get_Main().txtp0OnHand_SoS.setText((int)onHand[0]);
get_Main().txtp0OnOrder_SoS.setText((int)onOrder[0]);
get_Main().txtp0BackOrders_SoS.setText((int)p0backOrders_SoS());

//Determine how much to purchase from supplier

94

double p0purchaseAmount = inventoryPosition[0] <= s[0] ? S[0] -
inventoryPosition[0] : 0 ;

if (p0purchaseAmount > 0) {
 // Process Purchase from Supplier
//Determine onOrder amount
onOrder[0] += p0purchaseAmount;

//Send order to manufacturer by using a dynamic java event that delivers the order
at a future time equal to leadTime[i] (where “I” is the part index) in days
create_P0Manufacturing(leadTime[0] * day(), p0purchaseAmount);

}

// Determine Part 1's Inventory Position
//Update the current inventory position
inventoryPosition[0] = onHand[0] + onOrder[0] - p0backOrders_SoS();

//Update text on main screen.
get_Main().txtp0InventoryPosition_SoS.setText((int)inventoryPosition[0]);
get_Main().txtp0OnHand_SoS.setText((int)onHand[0]);
get_Main().txtp0OnOrder_SoS.setText((int)onOrder[0]);
get_Main().txtp0BackOrders_SoS.setText((int)p0backOrders_SoS());

return;
}

95

Appendix J. Java Code for Base Computations of Consumable Item Stock Levels

Calculate Annual Demands (AD) Code

//Determine annual demand amount for Part 1 at current model time from the
//p0demandHistory array.
if(part == 0){
 int y = 0;
 AD[part] = 0;
 double timeYear = time()-365;
 for(double v : p0demandHistory){
 if(timeYear < 0){
 if(v > 0 && v <= time()){
 y++;
 }
 }else if(timeYear >= 0){
 if(v >= timeYear && v <= time()){
 y++;
 }
 }
 }
 AD[part] = y;
//Determine annual demand amount for Part 2 at current model time from the
//p0demandHistory array.
}else if(part == 1){
 int z = 0;
 AD[part] = 0;
 double timeYear = time()-365;
 for(double x : p1demandHistory){
 if(timeYear < 0){
 if(x > 0 && x <= time()){
 z++;
 }
 }else if(timeYear >= 0){
 if(x >= timeYear && x <= time()){
 z++;
 }
 }
 }
 AD[part] = z;
}

Calculate Cumulative Recurring Demands (CRD) Code

//This code calculates CRD using either a regular tally count or the annualization
//process described in AFMAN 23-110
//If the calculation type that is passed equals “0” and no annualization date has been
//previously set this code will continue to add to the original quantity. If an
//annualization date has been set in the past then whatever value is in CRD_temp is added
//to the annualization value of the CRD for the part.

if(type == 0){
 if(annualizationDate[part] == 0){
 CRD[part] = 0;
 for (int j = 0; j < partStats.length; j++){

if((partStats[j][0] >= DOFD[part]) && (partStats[j][1] ==
part)){

 CRD[part] += partStats[j][2];
 }
 }
 }else if(annualizationDate[part] > 0){
 CRD_temp[part] = 0;
 for (int j = 0; j < partStats.length; j++){

if((partStats[j][1] == part) && (partStats[j][0] >=
annualizationDate[part]) && (partStats[j][0] >= time()-1)){

96

 CRD_temp[part] += partStats[j][2];
 }
 }
 CRD[part] += CRD_temp[part];
 }
//If the calculation type passed is equal to “1” then an annualized value of the CRD is
//calculated.
}else if(type == 1){
 calcDDR(part);
 CRD[part] = (int)(DDR[part] * 365);

}

Calculate Cumulative Demand Quantity (CDQ) and Cumulative Demand Quantity
Squared (CDQ2)

//This code calculates CDQ and CDQ2 using either a regular tally counts or the
//annualization process described in AFMAN 23-110. If the calculation type that is
//passed equals “0” and no annualization date has been previously set this code will
//continue to add to the original quantity. If an annualization date has been set in the
//past then whatever value is in CDQ_temp is added to the annualization value of the CDQ
//value for the part. CDQ2 is then calculated off of the CDQ value for the respective
/part.

if(type == 0){
 if(annualizationDate[part] == 0){
 CDQ[part] = 0;
 for (int j = 0; j < partStats.length; j++){

if((partStats[j][0] >= DOFD[part]) && (partStats[j][1] ==
part)){

 CDQ[part] += partStats[j][2];
 }
 }
 CDQ2[part] = (int)(pow(CDQ[part],2));
 }else if(annualizationDate[part] > 0){
 CDQ_temp[part] = 0;
 for (int j = 0; j < partStats.length; j++){

if((partStats[j][1] == part) && (partStats[j][0] >=
annualizationDate[part]) && (partStats[j][0] >= time()-1)){

 CDQ_temp[part] += partStats[j][2];
 }
 }
 CDQ[part] += CDQ_temp[part];
 CDQ2[part] = (int)(pow(CDQ[part],2));
 }
//If the calculation type passed is equal to “1” then an annualized value of the CDQ and
CDQ2 is calculated for the part.

}else if(type == 1){
 CDQ[part] = CDQ[part]/(time()-DOFD[part]);
 CDQ[part] = (int)(CDQ[part] * 365);
 calcVOD(part);
 CDQ2[part] = (int)((365 * VOD[part]) + pow(CDQ[part],2)/365);

}

Daily Demand Rate (DDR) Code

//DDR formula as specified in AFMAN 23-110, Volume 2, Part 2, Chapter 19, Paragraph
//19.2.1.1.1.
//DDR is the average quantity of an item that is used daily. It’s simply the cumulative
//recurring demands (CRD) divided by the number of days between the current date and the
//date of first demand (DOFD)

97

//As specified in the AFMAN, if the difference, in days, between the current date and the
//DOFD is less than 180 or greater than 540, then value of 180 and 540, respectively, are
//used as the denominator value

if(time()-DOFD[i] < 180){
 DDR[i] = (CRD[i] / 180);
}else if(time()-DOFD[i] >= 180 && time() - DOFD[i] < 540){
 DDR[i] = (CRD[i] / (time() - DOFD[i]));
}else if(time()-DOFD[i] >= 180 && time()-DOFD[i] >=540){
 DDR[i] = (CRD[i] / 540);
}

Daily Demand Frequency Rate (DDFR) Code

//DDFR formula as specified in AFMAN 23-110, Volume 2, Part 2, Chapter 19, Paragraph
//19.2.1.1.4. DDFR is the average daily number of customer demands for a part. DDFR is
//also known as the demand arrival rate. DDFR is calculated by dividing the sum of the
//number of demands in the current period (ND_CP), number of demands occurring between 6
//to 12 months in the past (ND_PSM1), and the number of demands that occurred between 12
//to 18 months in the past (ND_PSM2) by the difference, in days, between the current date
//and the DOFD. This code does essentially the same process, but just with a moving 18-
//month window.

int DemandCount0 = 0;
int DemandCount1 = 0;
double DateDiff0 = time() - DOFD[0];
double DateDiff1 = time() - DOFD[1];
double denominator = 365;
double denominator1 = 540;
if(part == 0){
 for(double v : p0demandHistory){
 if(v > DOFD[0] && v <= time()){
 DemandCount0++;
 }
 }
 if(DemandCount0 >= 1){
 if(DateDiff0 <= 365){
 DDFR[0] = (DemandCount0/denominator);
 }else if(DateDiff0 > 365 && DateDiff0 < 540){
 DDFR[0] = (DemandCount0/(time()-DOFD[0]));
 }else if(DateDiff0 >= 540){
 DDFR[0] = (DemandCount0/denominator1);
 }
 }
}if(part == 1){
 for(double v : p1demandHistory){
 if(v > DOFD[1] && v <= time()){
 DemandCount1++;
 }
 }
 if(DateDiff1 <= 365){
 DDFR[1] = (DemandCount1/denominator);
 }else if(DateDiff1 > 365 && DateDiff1 < 540){
 DDFR[1] = (DemandCount1/(time()-DOFD[1]));
 }else if(DateDiff1 >= 540){
 DDFR[1] = (DemandCount1/denominator1);
 }
}

General Economic Order Quantity (EOQ) Model Code

//EOQ formula as specified in AFMAN 23-110, Volume 2, Part 2, Chapter 19, Attachment 19B-
//4, Figure 19B4.1

EOQ[i] = (int)pow((2*AD[i]*OrderingCost[i])/HoldingCost[i],.5);

98

General Economic Order Quantity (EOQ) Model Code for Base-level Computations

//This function is used if the item’s ROP is calculated using standard base-level
computations
//If compute EOQ is greater than maxEOQ value, set quarterly variable to maxEOQ value

if(EOQ[i] >= DDR[i] * 365){
 calcMaxEOQ(i);
 wEOQ[i] = maxEOQ[i];
//If compute EOQ is less than minEOQ value, set quarterly variable to minEOQ value
}else if(EOQ[i] <= DDR[i] * 30){
 calcMinEOQ(i);
 wEOQ[i] = minEOQ[i];
//If compute EOQ is not greater than maxEOQ value and not less than minEOQ value, set
quarterly //variable to EOQ value
}else if((EOQ[i] < DDR[i] * 365) && (EOQ[i] > DDR[i] * 30)){
 calcEOQ(i);
 wEOQ[i] = EOQ[i];
}

General Economic Order Quantity (EOQ) Model Code for Central Computations
(COLT Model)

//This function is used if the item's ROP is calculated using COLT marginal analysis
//The formulas for this code is specified in AFMAN 23-110 Volume 2, Part 2, Chapter 19,
//Attachment 19B-3 and Attachment 19B-4

if(EOQ[i] >= DDR[i] * 90){
 calcMaxEOQ(i);
 wEOQ[i] = maxEOQ[i];
//If compute EOQ is less than minEOQ value, set quarterly variable to minEOQ value
}else if(EOQ[i] <= DDR[i] * 30){
 calcMinEOQ(i);
 wEOQ[i] = minEOQ[i];
//If compute EOQ is not greater than maxEOQ value and not less than minEOQ value, set
quarterly //variable to EOQ value
}else if((EOQ[i] < DDR[i] * 90) && (EOQ[i] > DDR[i] * 30)){
 calcEOQ(i);
 wEOQ[i] = EOQ[i];
}

Maximum EOQ Model Code

//EOQ formula as specified in AFMAN 23-110, Volume 2, Part 2, Chapter 19, Attachment 19B-
4
//If the stock is calculated using standard base calculations; we assume the item is not
sourced //from DLA in which case the maximum EOQ rules from AFMAN 23-110, Volume 2, Part
2, Chapter 19, //Attachment 19B-4, Paragraph 19B.4.4.1 apply
//If the stock is calculated using COLT, we assume it is sourced from DLA in which case
the //maximum EOQ rules from AFMAN 23-110, Volume 2, Part 2, Chapter 19, Attachment 19B-
4, Paragraph //19B.4.4.2.3.1

if(Simulation.SLQ_Calculation == 0){
 maxEOQ[i] = (int)(DDR[i] * 365);
}else if (Simulation.SLQ_Calculation == 1){
 maxEOQ[i] = (int)(DDR[i] * 90);
}

99

Minimum EOQ Model Code

//EOQ formula as specified in AFMAN 23-110, Volume 2, Part 2, Chapter 19, Attachment 19B-
4, //Paragraph 19B.4.4.1
//Minimum EOQ values don't depend on if an item is sourced from DLA or not (AFMAN 23-110,
Volume //2, Part 2, Chapter 19, Attachment 19B-4, Paragraph 19B.4.4.2.3.1)

minEOQ[i] = DDR[i] * 30;

Order and Ship Time Quantity (OSTQ) Code

//OSTQ formula as specified in AFMAN 23-110, Volume 2, Part 2, Chapter 19, paragraph
//19.2.2.1.1.2.1

OSTQ[i] = round(DDR[i] * ShipmentTime[i]);

Safety Level Quantity (SLQ) Code

//SLQ Formulas as specified in AFMAN 23-110, Volume 2, Part 2, Chapter 19, Attachment
19B-18, //Paragraphs 19B18.2 – 19B18.6
//Determine SLQ levels based on the current simulation time.

double tempSLQ = 0;
if(ND[i]/(time()-DOFD[i]) > 180){
 if(VOD[i] != 0 && qtrlyVOO[i] != 0){

tempSLQ = round(cFactor[i] *
pow((get_Main().soS.OST[i]*VOD[i])+(DDR[i]*DDR[i]*qtrlyVOO[i]),1/2));

 sLQ_formulatempvalue[i] = "Primary";
 primarySLQ[i] = (int)tempSLQ;
 } else if(VOD[i] == 0 && qtrlyVOO[i] != 0){

tempSLQ = round(cFactor[i] * pow(((ND[i]/(time()-DOFD[i]) *
(get_Main().soS.OST[i]) * pow((CRD[i]/ND[i]),2) +
(pow(DDR[i],2)*(qtrlyVOO[i])))),1/2));

 sLQ_formulatempvalue[i] = "First Sub";
 firstSubSLQ[i] = (int)tempSLQ;
 } else if(VOD[i] != 0 && qtrlyVOO[i] == 0){

tempSLQ = round(cFactor[i] * pow((ND[i]/(time()-
DOFD[i])*(get_Main().soS.OST[i])*pow((CRD[i]/ND[i]),2)),1/2));

 sLQ_formulatempvalue[i] = "Second Sub";
 secondSubSLQ[i] = (int)tempSLQ;
 }
} else if((ND[i]/time()-DOFD[i])<=180){
 if(VOD[i] != 0 && qtrlyVOO[i] != 0){

tempSLQ = round(cFactor[i] *
pow((get_Main().soS.OST[i]*VOD[i]+pow(DDR[i],2)*qtrlyVOO[i]),1/2));

 sLQ_formulatempvalue[i] = "Primary";
 primarySLQ[i] = (int)tempSLQ;
 } else if(VOD[i] == 0 && qtrlyVOO[i] != 0){

tempSLQ = round(cFactor[i] * pow(180 * (get_Main().soS.OST[i]) *
pow((CRD[i]/ND[i]),2) + (pow(DDR[i],2)*(qtrlyVOO[i])),1/2));

 sLQ_formulatempvalue[i] = "First Sub";
 firstSubSLQ[i] = (int)tempSLQ;
 } else if(VOD[i] != 0 && qtrlyVOO[i] == 0){

tempSLQ = round(cFactor[i] *
pow(180*(get_Main().soS.OST[i])*pow((CRD[i]/ND[i]),2),1/2));

 sLQ_formulatempvalue[i] = "Second Sub";
 secondSubSLQ[i] = (int)tempSLQ;
 }
}

//Compute Maximum Safety Level Quantity
maxSLQ[i] = (int)(2 * cFactor[i] * OSTQ[i]);

//Determine if computed SLQ is less than Maximum SLQ. If SLQ is less than Maximum SLQ,
use the //computed SLQ. Otherwise, if SLQ is greater than Maximum SLQ use the Maximum
SLQ amount for //Stock Level Computation
if(tempSLQ <= maxSLQ[i]){

100

 SLQ[i] = (int)tempSLQ;
} else if(tempSLQ > maxSLQ[i]) {
 SLQ[i] = (int)maxSLQ[i];
 sLQ_formulatempvalue[i] = "Maximum SLQ";
}

Variance of Demand (VOD) Code

//VOD calculations as specified in AFMAN 23-110, Volume 2, Part 2, Chapter 19, Attachment
19B-15

//Declarations
double n = time()-DOFD[i];

//If time from Date of First Demand (DOFD) is less than 180, use the value of 180 in the
//denominator else if time from DOFD is greater than 180 use the actual number of days
if(n<=180){
 VOD[i] = ((CDQ2[i] - pow(CDQ[i],2)/180)/ 180);
}else if(n>180){
 VOD[i] = ((CDQ2[i] - pow(CDQ[i],2)/n)/ n);
}

Variance of Order and Ship Time (VOO) Code

//VOO calculations as specified in AFMAN 23-110, Volume 2, Part 2, Chapter 19, Attachment
19B-16 and Chapter 5

//Declaration of variables
double p0lowerboundDI = SoSOrderDate[0];
double p0upperboundDI = SoSOrderDate[0] + 5;

double[][] p0vooArray = new double[p0demands_OST.size()][8];

//Create frequency distribution table
for(int a = 0, b = 1, c = 6; a < p0vooArray.length; a++){
 int p0counter = 0;
 p0vooArray[a][0] = p0lowerboundDI;
 p0vooArray[a][1] = p0upperboundDI;
 //Calculate Day Interval Lowerbound
 p0vooArray[a][2] = b;
 //Calculate Day Interval Upperbound
 p0vooArray[a][3] = c;

 //Calculate FI (count of receipts during O&ST)
 for(int d = 0; d < p0demands_OST.size(); d++){
if(p0demands_OST.get(d) >= p0lowerboundDI && p0demands_OST.get(d) < p0upperboundDI){
 p0counter++;
 }
 }

 p0vooArray[a][4]=p0counter;

 //Increase Day Interval Bounds
 b += 6;
 c += 6;
 p0lowerboundDI += 6;
 p0upperboundDI += 6;
}

for(int i = 0; i< p0vooArray.length; i++){
 //Calculate MI (Mid-Point of Day Interval)
 p0vooArray[i][5] = ((p0vooArray[i][2] + p0vooArray[i][3]) / 2);
 //Calculate FI * MI
 p0vooArray[i][6] = (p0vooArray[i][4] * p0vooArray[i][5]);
 //Calculate FI * MI^2
 p0vooArray[i][7] = (p0vooArray[i][4] * (p0vooArray[i][5] * p0vooArray[i][5]));
}

101

//Calculate sums of receipts during OS&T, Mid-Points of Day Intervals and Number of
Receipts during OS&T * Mid-Points of Day Intervals squared
double p0sumFI = 0, p0sumFIMI = 0, p0sumFIMI2 = 0;

for(int i = 0; i < p0vooArray.length; i++){
 p0sumFI += p0vooArray[i][4];
 p0sumFIMI += p0vooArray[i][6];
 p0sumFIMI2 += p0vooArray[i][7];
}

//Calculate final value of Variance of Order and Ship Time
if(p0sumFI == 0){
 VOO[0] = 0;
 p0VOO.add(0.0);
}else if(p0sumFI > 0){
 VOO[0] = (p0sumFIMI2 - (pow(p0sumFIMI,2)/p0sumFI))/p0sumFI;
 p0VOO.add(VOO[0]);
}

Consumable Item Demand Level Code

//The order-up-to level of a part is also known as the consumable item demand level code.
//Depending on the user selected reorder point calculation parameter, this formula is
manipulated
//to compute the ROP either as SLQ + OSTQ or through COLT’s marginal analysis process.

if(Simulation.SLQ_Calculation == 0){
 EOQ_DL[i] = round(wEOQ[i] + OSTQ[i] + SLQ[i] + 0.999);
}else if(Simulation.SLQ_Calculation == 1){
 EOQ_DL[i] = round(wEOQ[i] + colt_s[i] + 0.999);
}
return EOQ_DL[i];

Consumable Item Reorder Point Code

//The order-up-to level of part is also known as the consumable item demand level code.
The
//formula for this code is specified in AFMAN 23-110 Volume 2, Part 2, Chapter 19,
Attachment
//19B-3, Paragraph 19.2.2.1.2.1.1.
//Depending on the user selected reorder point calculation parameter, this formula is
manipulated
//to either compute the ROP as SLQ + OSTQ or through COLT’s marginal analysis process.

if(Simulation.SLQ_Calculation == 0){
 ROP[i] = round(OSTQ[i] + SLQ[i] + 0.999);
}else if(Simulation.SLQ_Calculation == 1){
 ROP[i] = colt_s[i];

}

102

Appendix K. COLT Parameters Computation Java Code

//The lot size value can be considered the same as the average size of each demand.
LotSize[i] = (int)((CRD[i]/ND[i]) + 0.5);

//The pipe value can be consider the same as demand during lead time with consideration
given to the availability of stock at the Source of Supply
Pipe[i] = (get_Main().soS.OST[i] + get_Main().soS.SA[i] + ((1-get_Main().soS.SA[i]) *
get_Main().soS.CONDEL[i])) * DDR[i];

//Variance to Mean Ratio (VMR) calculation
VMR[i] = (DDR[i] * DDR[i] * get_Main().soS.SA[i] * (1 - get_Main().soS.SA[i]) *
get_Main().soS.CONDEL[i] * get_Main().soS.CONDEL[i] + (2 * LotSize[i] - 1) * DDR[i] * ((1
- get_Main().soS.SA[i]) * get_Main().soS.CONDEL[i] + 14 + get_Main().soS.SA[i])) /
(DDR[i] * (14 + get_Main().soS.SA[i] + (1 - get_Main().soS.SA[i]) *
get_Main().soS.CONDEL[i]));

//Inverse of VMR – used in the negative binomial recursion formula
p[i] = 1/VMR[i];

//One minus the VMR inverse – used in the negative binomial recursion formula
q[i] = 1-p[i];

103

Appendix L. Negative Binomial Formula for Expected Backorders Java Code

//This code was provided by the 402 SCMS at Wright Patterson AFB, OH
//The following parameters are passed to this function from the ELRS Active Object:
// i – part index
// EOQ – computed economic order quantity value
// ROP – computed reorder point
// s – user determined value for bench stock level
// pipe – expected lead time
// p –
// q –
// vtm – variance to mean ratio

//Declarations and initialization of variables
double OEBO1 = 0;
double AllNegBin = 0;
double fqp = 0;
double Pj = 0;
double stock1a = 0;
double stock1b = 0;
double stock2a = 0;
double stock2b = 0;
double stock3a = 0;
double stock3b = 0;
double f = 0;
double g = 0;
double Oneg = 0;
double Onef = 0;
double LogOneg = 0;
double A = 0;
double Lcumu = 0;
double Lcumu2 = 0;
double Lcumu3 = 0;
double Lcumu1a = 0;
double Lcumu1b = 0;
double Lcumu2a = 0;
double Lcumu2b = 0;
double Lcumu3a = 0;
double Lcumu3b = 0;
double LcumuNegBin = 0;
double LcumuNegBin2 = 0;
double LcumuNegBin3 = 0;
double LP0 = 0;
double LP1 = 0;
double P0 = 0;
double P1 = 0;
boolean Big;
stock1a = ROP + s;
stock1b = EOQ + ROP + s;
stock2a = ROP + s - 1;
stock2b = EOQ + ROP + s - 1;
stock3a = ROP + s - 2;
stock3b = EOQ + ROP + s - 2;
f = pipe / (vtm - 1);
fqp = 0;
AllNegBin = 0;

 if(stock1b < 0){
 AllNegBin = 0;
 }else{

 g = 1 / vtm;
 Oneg = 1 - g;
 Onef = f - 1;
 LogOneg = Math.log(Oneg);
 A = Onef * Oneg;

104

 if(pipe == 0){

 if(stock1a < 0){
 Lcumu1a = 0;
 }else{
 Lcumu1a = 1;
 }

 Lcumu1b = 1;

 if(stock2b < 0){
 Lcumu2a = 0;
 Lcumu2b = 0;
 }else if (stock2a < 0) {
 Lcumu2a = 0;
 Lcumu2b = 1;
 }else{
 Lcumu2a = 1;
 Lcumu2b = 1;
 }

 if(stock3b < 0){
 Lcumu3a = 0;
 Lcumu3b = 0;
 }else if (stock3a < 0){
 Lcumu3a = 0;
 Lcumu3b = 1;
 }else{
 Lcumu3a = 1;
 Lcumu3b = 1;
 }
 }else{

 P0 = Math.pow(g,f);
 Lcumu = P0;
 Lcumu2 = 0;
 Lcumu3 = 0;
 LP0 = f * Math.log(g);

 if(LP0 < -30){
 Big = true;
 }else{
 Big = false;
 }

 if(stock1a < 0){
 Lcumu1a = 0;
 }else{
 Lcumu1a = P0;
 }

 Lcumu1b = P0;
 Lcumu2a = 0;
 Lcumu2b = 0;
 Lcumu3a = 0;
 Lcumu3b = 0;

 for(int j = 1; j <= stock1b; j++){
 if(Big == true){
 LP1 = LP0 + Math.log(Onef + j) + LogOneg - Math.log(j);
 P1 = exp(LP1);
 Lcumu = Lcumu + P1;
 Pj = P1 * j;
 Lcumu2 = Lcumu2 + Pj;
 Lcumu3 = Lcumu3 + Pj * (j - 1);
 LP0 = LP1;
 }else if(Big == false){
 P1 = P0 * (A / j + Oneg);

105

 Lcumu = Lcumu + P1;
 Pj = P1 * j;
 Lcumu2 = Lcumu2 + Pj;
 Lcumu3 = Lcumu3 + Pj * (j - 1);
 P0 = P1;
 }

 if(j == stock1a){
 Lcumu1a = Lcumu;
 Lcumu2a = Lcumu2;
 Lcumu3a = Lcumu3;
 }
 }
 Lcumu1b = Lcumu;
 Lcumu2b = Lcumu2;
 Lcumu3b = Lcumu3;
 }

 fqp = f * q / p;
 LcumuNegBin = (stock1b * (stock1b + 1) * Lcumu1b) - (stock1a * (stock1a + 1) *
Lcumu1a);
 if(pipe == 0){
 LcumuNegBin2 = 0;
 LcumuNegBin3 = 0;
 } else {
 LcumuNegBin2 = 2 * fqp * ((stock2a + 1) * Lcumu2a - (stock2b + 1) * Lcumu2b)
/ pipe;
 LcumuNegBin3 = fqp * (fqp + q / p) * (Lcumu3b - Lcumu3a) / pipe / (pipe + vtm
- 1);
 }

 AllNegBin = LcumuNegBin + LcumuNegBin2 + LcumuNegBin3;

 }

 OEBO1 = (0.5 / EOQ) * AllNegBin + fqp - (ROP + s) - 0.5 * (EOQ + 1);

return OEBO1;

106

Appendix M. COLT Marginal Analysis Process Java Code

//Declarations
double[][] coltMA_Array = new double[2000][18];

//Initialization of COLT Marginal Analysis array
for(int a = 0; a <= 1999; a++){
 for(int b = 0; b <= 16; b++){
 coltMA_Array[a][b] = 0;
 }
}

//***************************Create COLT MA Workspace********************************
//Compute Index
for(int a = 1, b = 22; a <= wEOQ[0]+2; a++, b++){
 coltMA_Array[a-1][0] += a;
}

//********************Calculate Part 1's COLT MA Parameters***********************
//Compute Part 1 ROP
for(int a = -1, b = 22; a <= (wEOQ[0]); a++, b++){
 coltMA_Array[a + 1][1] += a;
}

//Compute Part 1’s EOQ values
coltMA_Array[0][2] = 1;
coltMA_Array[1][2] = 1;

for(int a = 1, b = 22; a <= (wEOQ[0]); a++, b++){
 coltMA_Array[a+1][2] = wEOQ[0];
}

//Compute Part 1 Level
for(int a = 0, b = 22; a <=(wEOQ[0]+1); a++, b++){
 coltMA_Array[a][3] = coltMA_Array[a][1] + coltMA_Array[a][2];
}

//Compute Part 1 Expected BackOrders (EBOs)
for(int a = 0, b = 22; a <= (wEOQ[0]+1); a++, b++){
coltMA_Array[a][4] = calc_nbEBO(0, coltMA_Array[a][2], coltMA_Array[a][1], BenchStock[0],
Pipe[0], p[0], q[0], VMR[0]);
}

//Compute Part 1 Customer Wait Time
for(int a = 0, b = 22; a <= (wEOQ[0]+1); a++, b++){
 coltMA_Array[a][5] = coltMA_Array[a][4]/get_Main().eLRS.DDR[0];
}

//Compute Part 1 EBO Delta
for(int a = 0, b = 22; a <= (wEOQ[0]+1); a++, b++){
 if(coltMA_Array[a][1] == -1){
 coltMA_Array[a][6] = 0;
 }else if(coltMA_Array[a][1] > -1){
coltMA_Array[a][6] = ((coltMA_Array[a-1][4]-coltMA_Array[a][4])/(coltMA_Array[a][3]-
coltMA_Array[a-1][3]));
 }
}

//Compute Part 1 Marginal Benefit
for(int a = 0, b = 22; a <= (wEOQ[0]+1); a++, b++){
 coltMA_Array[a][7] = coltMA_Array[a][6]/get_Main().soS.UnitPrice[0];
}

//********************Calculate Part 2's COLT MA Parameters***********************
//Compute Part 2 ROP
for(int a = -1, b = 22; a <= (wEOQ[1]); a++, b++){

107

 coltMA_Array[a + 1][8] += a;
}

//Compute Part 2’s EOQ values
coltMA_Array[0][9] = 1;
coltMA_Array[1][9] = 1;

for(int a = 1, b = 22; a <= (wEOQ[1]); a++, b++){
 coltMA_Array[a+1][9] = wEOQ[1];
}

//Compute Part 2 Level
for(int a = 0, b = 22; a <=(wEOQ[1]+1); a++, b++){
 coltMA_Array[a][10] = coltMA_Array[a][8] + coltMA_Array[a][9];
}

//Compute Part 2 Eexpected BackOrders (EBOs)
for(int a = 0, b = 22; a <= (wEOQ[1]+1); a++, b++){
coltMA_Array[a][11] = calc_nbEBO(1, coltMA_Array[a][9], coltMA_Array[a][8],
BenchStock[1], Pipe[1], p[1], q[1], VMR[1]);
}

//Compute Part 2 Customer Wait Time
for(int a = 0, b = 22; a <= (wEOQ[1]+1); a++, b++){
 coltMA_Array[a][12] = coltMA_Array[a][11]/get_Main().eLRS.DDR[1];
}

//Compute Part 2 EBO Delta
for(int a = 0, b = 22; a <= (wEOQ[1]+1); a++, b++){
 if(coltMA_Array[a][8] == -1){
 coltMA_Array[a][13] = 0;
 }else if(coltMA_Array[a][8] > -1){
coltMA_Array[a][13] = ((coltMA_Array[a-1][11]-coltMA_Array[a][11])/(coltMA_Array[a][10]-
coltMA_Array[a-1][10]));
 }
}

//Compute Part 2 Marginal Benefit
for(int a = 0, b = 22; a <= (wEOQ[1]+1); a++, b++){
 coltMA_Array[a][14] = coltMA_Array[a][13]/get_Main().soS.UnitPrice[1];
}

//********************Update COLT Sort Value Target***********************
if(wEOQ[0] > wEOQ[1]){
 for(int a = 0, b = 22; a <= (wEOQ[0]+1); a++, b++){
 coltMA_Array[a][15] = SVTgt;
 }
}else if (wEOQ[0] <= wEOQ[1]){
 for(int a = 0, b = 22; a <= (wEOQ[1]+1); a++, b++){
 coltMA_Array[a][15] = SVTgt;
 }
}

//Initialize ROP variable computed by COLT
colt_s[0] = 0;
colt_s[1] = 0;

//Compute Item to Stock
//If Part 1's EOQ is bigger than Part 2's EOQ, Part 1's EOQ + 1 will be used as the
stopping //point
if(wEOQ[0] > wEOQ[1]){
 //Loop through the arrays to run the marginal analysis
 //array1 initializes the array containing Part 1's information
 //array2 initializes the array containing Part 2's information
 //array3 initializes the array containing the Sort Value Target
//All of the above arrays are created in order to output a Marginal Analysis table to
//Excel

108

 for(int a = 0, array1 = 1, array2 = 1, array3 = 1, row = 23; a <= (wEOQ[0] + 1);
a++){
//If the marginal benefit of Part 1 and the marginal benefit of Part 2 are both bigger
//than the Sort Value Target run this part of the if-else statement
if((coltMA_Array[array1][7] > coltMA_Array[array3][15]) && (coltMA_Array[array2][14] >
coltMA_Array[array3][15])){
//If the marginal benefit of Part 1 is bigger when compared to the //marginal benefit of
//Part 2, increase the ROP of Part 1 by a value of 1 and then move to the next marginal
//benefit value of Part 1
 if((coltMA_Array[array1][7] > coltMA_Array[array2][14])){
 coltMA_Array[array3][16] = 1;
 array1++;
 array3++;
 row++;
 colt_s[0]++;
//If the marginal benefit of Part 2 is bigger when compared to the marginal benefit of
//Part 1, increase the ROP of Part 2 by a value of 1 and then move to the next marginal
//benefit value of Part 2
 }else if((coltMA_Array[array1][7] <
coltMA_Array[array2][14])){
 coltMA_Array[array3][16] = 2;
 array2++;
 array3++;
 row++;
 colt_s[1]++;
 }
//If only the marginal benefit of Part 1 is bigger than the Sort Value Target run this
//part of the if-else statement
}else if((coltMA_Array[array1][7] > coltMA_Array[array3][15]) &&
(coltMA_Array[array2][14] < coltMA_Array[array3][15])){
 coltMA_Array[array3][16] = 1;
 array1++;
 array3++;
 row++;
 colt_s[0]++;
//If only the marginal benefit of Part 2 is bigger than the Sort Value Target run this
//part of the if-else statement
}else if((coltMA_Array[array1][7] < coltMA_Array[array3][15]) &&
(coltMA_Array[array2][14] > coltMA_Array[array3][15])){
 coltMA_Array[array3][16] = 2;
 array2++;
 array3++;
 row++;
 colt_s[1]++;
 }
 }
//If Part 2's EOQ is bigger than Part 1's EOQ, Part 2's EOQ + 1 will be used as the
//stopping point
}else if(wEOQ[0] < wEOQ[1]){
 //Loop through the arrays to run the marginal analysis
 //array1 initializes the array containing Part 1's information
 //array2 initializes the array containing Part 2's information
 //array3 initializes the array containing the Sort Value Target
//All of the above arrays are created in order to output a Marginal Analysis table to
//Excel
 for(int a = 0, array1 = 1, array2 = 1, array3 = 1, row = 23; a <= (wEOQ[1] + 1);
a++){
//If the marginal benefit of Part 1 and the marginal benefit of Part 2 are both bigger
//than the Sort Value Target run this part of the if-else statement
if((coltMA_Array[array1][7] > coltMA_Array[array3][15]) && (coltMA_Array[array2][14] >
coltMA_Array[array3][15])){
//If the marginal benefit of Part 1 is bigger when compared to the marginal benefit of
//Part 2, increase the ROP of Part 1 by a value of 1and then move to the next marginal
//benefit value of Part 1
 if((coltMA_Array[array1][7] > coltMA_Array[array2][14])){
 coltMA_Array[array3][16] = 1;
 array1++;
 array3++;
 row++;

109

 colt_s[0]++;
//If the marginal benefit of Part 2 is bigger when compared to the marginal benefit of
//Part 1, increase the ROP of Part 2 by a value of 1 and then move to the next marginal
//benefit value of Part 2
 }else if((coltMA_Array[array1][7] <
coltMA_Array[array2][14])){
 coltMA_Array[array3][16] = 2;
 array2++;
 array3++;
 row++;
 colt_s[1]++;
 }
//If only the marginal benefit of Part 1 is bigger than the Sort Value Target run this
//part of the if-else statement
}else if((coltMA_Array[array1][7] > coltMA_Array[array3][15]) &&
(coltMA_Array[array2][14] < coltMA_Array[array3][15])){
 coltMA_Array[array3][16] = 1;
 array1++;
 array3++;
 row++;
 colt_s[0]++;
//If only the marginal benefit of Part 2 is bigger than the Sort Value Target run this
//part of the if-else statement
}else if((coltMA_Array[array1][7] < coltMA_Array[array3][15]) &&
(coltMA_Array[array2][14] > coltMA_Array[array3][15])){
 coltMA_Array[array3][16] = 2;
 array2++;
 array3++;
 row++;
 colt_s[1]++;
 }
 }
//If Part 2's EOQ equal to Part 1's EOQ, Part 2's EOQ + 1 will be used as the stopping
//point
}else if(wEOQ[0] == wEOQ[1]){
 //Loop through the arrays to run the marginal analysis
 //array1 initializes the array containing Part 1's information
 //array2 initializes the array containing Part 2's information
 //array3 initializes the array containing the Sort Value Target
//All of the above arrays are created in order to output a Marginal Analysis table to
//Excel
 for(int a = 0, array1 = 1, array2 = 1, array3 = 1, row = 23; a <= (wEOQ[1] + 1);
 a++){
//If the marginal benefit of Part 1 and the marginal benefit of Part 2 are both bigger
than the Sort Value Target run this part of the if-else statement
if((coltMA_Array[array1][7] > coltMA_Array[array3][15]) && (coltMA_Array[array2][14] >
coltMA_Array[array3][15])){
//If the marginal benefit of Part 1 is bigger when compared to the marginal benefit of
//Part 2, increase the ROP of Part 1 by a value of 1 and then move to the next marginal
//benefit value of Part 1
 if((coltMA_Array[array1][7] > coltMA_Array[array2][14])){
 coltMA_Array[array3][16] = 1;
 array1++;
 array3++;
 row++;
 colt_s[0]++;
//If the marginal benefit of Part 2 is bigger when compared to the marginal benefit of
//Part 1, increase the ROP of Part 2 by a value of 1 and then move to the next marginal
//benefit value of Part 2

}else if((coltMA_Array[array1][7] <
coltMA_Array[array2][14])){

 coltMA_Array[array3][16] = 2;
 array2++;
 array3++;
 row++;
 colt_s[1]++;
 }
//If only the marginal benefit of Part 1 is bigger than the Sort Value Target run this
//part of the if-else statement

110

}else if((coltMA_Array[array1][7] > coltMA_Array[array3][15]) &&
(coltMA_Array[array2][14] < coltMA_Array[array3][15])){
 coltMA_Array[array3][16] = 1;
 array1++;
 array3++;
 row++;
 colt_s[0]++;
//If only the marginal benefit of Part 2 is bigger than the Sort Value Target run this
//part of the if-else statement
}else if((coltMA_Array[array1][7] < coltMA_Array[array3][15]) &&
(coltMA_Array[array2][14] > coltMA_Array[array3][15])){
 coltMA_Array[array3][16] = 2;
 array2++;
 array3++;
 row++;
 colt_s[1]++;
 }
 }
}

111

Appendix N. Initial Inventory Update Process Flow and Java Code

Initial Inventory Update Process Flow

Abs(Time) ==30?

Finish

False

True

Calculate DDR

Calculate DDFR

Calculate SLQ

Calculate COLT
Parameters

Calculate EBO
Distribution

Compute COLT
Marginal Analysis

Set Item’s POS
Demand Level

Set Item’s POS
Reorder Point

Compute Item’s POS
Reorder Point using
COLT MA Process

Compute Item’s POS
Reorder Point using

standard base
computations

Base-level computations (Non-
DLA Items) or Centrally

computed levels (DLA Items)?

Refresh update time and
description

Non-DLA ItemsDLA Items

Calculate average
VOO for any past

shipments

Update quarterly
variables

Calculate OSTQ

Loop for each Part

Next Part

Calculate VOD

Base-level computations
(Non-DLA Items) or Centrally
computed levels (DLA Items)?

Compute EOQ for non-
DLA items

Compute EOQ for DLA
items

Non-DLA ItemsDLA Items

Next Part

Loop for each Part

Base-level computations (Non-
DLA Items) or Centrally computed

levels (DLA Items)?
DLA Items

Non-DLA Items

CalculateCRD

Calculate CDQ &
CDQ2

Figure 17. Flowchart of Initial Inventory Update Logic

112

Initial Inventory Update Process Java Code

//Calculate average Variance of Order and Ship Time (VOO) for any past shipments of Part
1
if(p0VOO.size() != 0){
 double sump0VOO = 0;
 for (int j = 0; j < p0VOO.size(); j++){
 sump0VOO += p0VOO.get(j);
 }
 qtrlyVOO[0] = sump0VOO/p0VOO.size();
}else if(p0VOO.size() == 0){
 qtrlyVOO[0] = 0;
}

//Calculate average Variance of Order and Ship Time (VOO) for any past shipments of Part
2
if(p1VOO.size() != 0){
 double sump1VOO = 0;
 for (int j = 0; j < p1VOO.size(); j++){
 sump1VOO += p1VOO.get(j);
 }
 qtrlyVOO[1] = sump1VOO/p1VOO.size();
}else if(p1VOO.size() == 0){
 qtrlyVOO[1] = 0;
}

//Clear VOO arrays
p0VOO.clear();
p1VOO.clear();

//Calculate inventory management parameters for each part
for(int i = 0; i <= 1; i++){

 //Calculate Daily Demand Rate
 calcCRD(0,i);

//Calculate Daily Demand Rate

 calcDDR(i);

 //Calculate Daily Demand Frequency Rate
 calcDDFR(i);

 //Calculate Daily Demand Rate
 calcCDQ_CDQ2(0,i);

 //Calculate Variance Of Demand
 calcVOD(i);

 //Calculate Safety Level Quantity
 calcSLQ(i);
 sLQ_formula[i] = sLQ_formulatempvalue[i];

 //Calculate Order and Ship Time Quantity
 calcOSTQ(i);

 //Update EOQ Value based on how inventory calculations are computed: Base v.
Centrally
 if(Simulation.SLQ_Calculation == 0){
 Base_EOQ(i);
 }else if (Simulation.SLQ_Calculation == 1){
 DLA_EOQ(i);
 }

 //Calculate COLT parameters
 calcCOLTParameters(i);

 //Calculate EBO Distribution

113

 EBO[i] = calc_nbEBO(i, wEOQ[i], s[i], BenchStock[i], Pipe[i], p[i], q[i], VMR[i]);

}

//Compute COLT Marginal Analysis
if(Simulation.SLQ_Calculation == 1){
 calcCOLTMA();
}

for(int i = 0; i <= 1; i++){

 //Compute Primary Operating Stock Consumable Item Reorder Point
 calcROP(i);

 //Compute Primary Operating Stock Consumable Item Demand Level
 calcEOQDL(i);

 //Set Primary Operating Stock Consumable Item Demand Level
 S[i] = EOQ_DL[i];

 //Set Primary Operating Stock Consumable Item Reorder Point
 s[i] = ROP[i];

 //Update refresh time and description
 updatePeriod[i] = "Initial";
 updateDate[i] = time();
}

114

Appendix O. Item Demand Level Changes Update Process Flow and Java Code

Item Demand Level Changes Update Process Flow

Closure Method not specified or Closure Method
Specifed and Time < Inventory Drawdown Start

Finish

False

True

Loop for each Part

Inventory Position < ROP
&

(EOQDL >= Current EOQDL + Sqrt(Current
EOQDL)

Or
EOQDL <= Current EOQDL - Sqrt(Current

EOQDL))

True

False

Calculate CRD &
DDR

Calculate DDFR,
CDQ, and CDQ2

Calculate SLQ

Calculate COLT
Parameters

Calculate EBO
Distribution

Compute COLT
Marginal Analysis

Set Item’s POS
Demand Level

Set Item’s POS
Reorder Point

Compute Item’s POS
Reorder Point using
COLT MA Process

Compute Item’s POS
Reorder Point using

standard base
computations

Base-level computations (Non-
DLA Items) or Centrally

computed levels (DLA Items)?
Non-DLA ItemsDLA Items

Calculate average

Update quarterly
variables

Calculate OSTQ

Next Part

Calculate VOD

Base-level computations
(Non-DLA Items) or Centrally
computed levels (DLA Items)?

Compute EOQ for non-
DLA items

Compute EOQ for DLA
items

Non-DLA ItemsDLA Items

Next Part

Loop for each Part

Base-level computations (Non-
DLA Items) or Centrally computed

levels (DLA Items)?
DLA Items

Non-DLA Items

Set Change Flag = 1

ChangeFlag =1?

Refresh update time and
description

Set Change Flag = 0

Figure 18. Flowchart of Item Demand Level Change Update Logic

115

Item Demand Level Change Update Process Java Code

//According to AFMAN 23-110, Volume 2, Part 2, Chapter 19, Paragraph 19.2.2.1.2.2. item
//stock levels are adjusted either quarterly or whenever the inventory position is less
//than or equal to the item ROP and the amount of change in the demand level equals or
//exceeds the square root of the existing level As specified in AFMAN 23-110 Volume 2,
//Part 2, Chapter 19, Attachment 19B-21 defines the "Square Root" rule "Square Root" Rule
//- if the new computed level is less than or equal to the current level minus the square
//root of the current level or greater than or equal to the current level plus the square
/root of the current level. This event is run daily after the first 30 days and checks if
//the computed demand level equals or exceeds the square root of the existing level when
//the inventory position drops below the item's reorder point. Run the "Square Root"
//rule check for each item. Execute code in "if" statement if the closure method is not
//set or if the closure method is set and the current model time is less the
//demobilization start date. Change Flag variable is used to identify if one of the
//parts had its item demand level changed as a result of the Square Root rule.

int changeFlag = 0;
if((Simulation.ClosureMethod == 0) || ((Simulation.ClosureMethod != 0) && (time() <
Simulation.InventoryDrawdownStart))){
//Check to see if the part's inventory position is below the reorder point value and the
//"Square Root" rule is violated.
 for(int i = 0; i <= 1; i++){
if((inventoryPosition[i] <= s[i]) && (S[i] >= (S[i] + pow(S[i],(1/2))) || S[i] <= (S[i] -
pow(S[i],(1/2)))) || (inventoryPosition[i] <= s[i]) && (S[i] >= (S[i] +
pow(S[i],(1/2))))){
 //Set Change Flag equal to 1
 changeFlag = 1;
 if(i == 0){
//Calculate average Variance of Order and Ship Time (VOO) //for any past shipments of
Part 1 & clear the array when //done
 if(p0VOO.size() != 0){
 double sump0VOO = 0;
 for (int j = 0; j < p0VOO.size(); j++){
 sump0VOO += p0VOO.get(j);
 }
 qtrlyVOO[0] = sump0VOO/p0VOO.size();
 }else if(p0VOO.size() == 0){
 qtrlyVOO[0] = 0;
 }
p0VOO.clear();
 }else if(i == 1){
//Calculate average Variance of Order and Ship Time (VOO) //for any past shipments of
Part 2 & clear the array when //done
 if(p1VOO.size() != 0){
 double sump1VOO = 0;
 for (int j = 0; j < p1VOO.size(); j++){
 sump1VOO += p1VOO.get(j);
 }
 qtrlyVOO[1] = sump1VOO/p1VOO.size();
 }else if(p1VOO.size() == 0){
 qtrlyVOO[1] = 0;
 }
 p1VOO.clear();
 }

 //Calculate Daily Demand Rate
 calcCRD(0,i);

//Calculate Daily Demand Rate
 calcDDR(i);

 //Calculate Daily Demand Frequency Rate
 calcDDFR(i);

 //Calculate Daily Demand Rate
 calcCDQ_CDQ2(0,i);

116

 //Calculate Variance Of Demand
 calcVOD(i);

 //Calculate Safety Level Quantity
 calcSLQ(i);
 sLQ_formula[i] = sLQ_formulatempvalue[i];

 //Calculate Order and Ship Time Quantity
 calcOSTQ(i);

//Update EOQ Value based on how inventory calculations are //computed: Base v. Centrally
 if(Simulation.SLQ_Calculation == 0){
 Base_EOQ(i);
 }else if (Simulation.SLQ_Calculation == 1){
 DLA_EOQ(i);
 }

 //Update quarterly variables
 qtrlyOST[i] = get_Main().soS.OST[i];
 qtrlyOSTQ[i] = OSTQ[i];
 qtrlySLQ[i] = SLQ[i];
 qtrlyND[i] = ND[i];

 //Calculate COLT parameters
 calcCOLTParameters(i);

 //Calculate EBO Distribution
EBO[0] = calc_nbEBO(i, wEOQ[i], s[i], BenchStock[i], Pipe[i], p[i], q[i], VMR[i]);

 //Update refresh time and description
 updatePeriod[i] = "Out of bounds";
 updateDate[i] = time();
 }
 }
//If Change Flag equals 1 then one of the items had its item demand level changed,
//therefore the system should be updated
 if(changeFlag == 1){
 //Compute COLT Marginal Analysis
 if(Simulation.SLQ_Calculation == 1){
 calcCOLTMA();
 }

 for(int i = 0; i <= 1; i++){

 //Compute Primary Operating Stock Consumable Item Reorder
Point
 calcROP(i);

 //Compute Primary Operating Stock Consumable Item Demand
Level
 calcEOQDL(i);

 //Set Primary Operating Stock Consumable Item Demand Level
 S[i] = EOQ_DL[i];

 //Set Primary Operating Stock Consumable Item Reorder Point
 s[i] = ROP[i];
 }
 //Reset the value of the Change Flag for next time
 changeFlag = 0;
 }
}

117

Appendix P. Quarterly Inventory Update Process Flow and Java Code

Quarterly Inventory Update Process Flow

No Closure Method
Or

Time < Demobilization Start Dat

Calculate SLQ

Calculate COLT
Parameters

Calculate EBO
Distribution

Compute COLT
Marginal Analysis

Set Item’s POS
Demand Level

Set Item’s POS
Reorder Point

Compute Item’s POS
Reorder Point using
COLT MA Process

Compute Item’s POS
Reorder Point using

standard base
computations

Base-level computations (Non-
DLA Items) or Centrally

computed levels (DLA Items)?

Refresh update time and
description

Finish

Non-DLA ItemsDLA Items

False

Calculate average
VOO for any past

shipments

True

Update quarterly
variables

Calculate OSTQ

Loop for each Part

Next Part

Is Month = January, April,
 July, or October

True

False

Is Day of the Month = 1? True

False

Base-level computations
(Non-DLA Items) or Centrally
computed levels (DLA Items)?

Compute EOQ for non-
DLA items

Compute EOQ for DLA
items

Non-DLA ItemsDLA Items

Next Part

Loop for each Part

Base-level computations (Non-
DLA Items) or Centrally computed

levels (DLA Items)?
DLA Items

Non-DLA Items

Figure 19. Flowchart of Quarterly Inventory Update Logic

118

Quarterly Inventory Update Process Java Code

//Execute code in "if" statement if the closure method is not set or if the closure
method is set //and the current model time is less the demobilization
//start date
if((Simulation.ClosureMethod == 0) || ((Simulation.ClosureMethod != 0) && (time() <
Simulation.RedeploymentStart))){
 //Is simulated month equal January, April, July or October?
 if(getMonth() == 0 || getMonth() == 3 || getMonth() == 6 || getMonth() == 9){
 //Is simulated calendar day equal to 1?
 if(getDayOfMonth() == 1){
//Calculate average Variance of Order and Ship Time (VOO) for any past //shipments of
Part 1
 if(p0VOO.size() != 0){
 double sump0VOO = 0;
 for (int j = 0; j < p0VOO.size(); j++){
 sump0VOO += p0VOO.get(j);
 }
 qtrlyVOO[0] = sump0VOO/p0VOO.size();
 }else if(p0VOO.size() == 0){
 qtrlyVOO[0] = 0;
 }

 //Calculate average VOO for any past shipments of Part 2
 if(p1VOO.size() != 0){
 double sump1VOO = 0;
 for (int j = 0; j < p1VOO.size(); j++){
 sump1VOO += p1VOO.get(j);
 }
 qtrlyVOO[1] = sump1VOO/p1VOO.size();
 }else if(p1VOO.size() == 0){
 qtrlyVOO[1] = 0;
 }

 //Clear VOO arrays
 p0VOO.clear();
 p1VOO.clear();

 for(int i = 0; i <= 1; i++){

 //Calculate Safety Level Quantity
 calcSLQ(i);
 sLQ_formula[i] = sLQ_formulatempvalue[i];

//Calculate Order and Ship Time Quantity
 calcOSTQ(i);

//Update EOQ Value based on how inventory calculations are
//computed: Base v. Centrally

 if(Simulation.SLQ_Calculation == 0){
 Base_EOQ(i);
 }else if (Simulation.SLQ_Calculation == 1){
 DLA_EOQ(i);
 }

 //Calculate COLT parameters
 calcCOLTParameters(i);

 //Calculate EBO Distribution

EBO[i] = calc_nbEBO(i, wEOQ[i], s[i], BenchStock[i],
Pipe[i], p[i], q[i], VMR[i]);

 }

//Compute COLT Marginal Analysis if inventory calculations are
centrally computed

 if(Simulation.SLQ_Calculation == 1){
 calcCOLTMA();

119

 }

 for(int i = 0; i <= 1; i++){

//Compute Primary Operating Stock Consumable Item Reorder
//Point

 calcROP(i);

//Compute Primary Operating Stock Consumable Item Demand
//Level

 calcEOQDL(i);

 //Set Primary Operating Stock Consumable Item Demand Level
 S[i] = EOQ_DL[i];

 //Set Primary Operating Stock Consumable Item Reorder Point
 s[i] = ROP[i];

 //Update refresh time and description
 updatePeriod[i] = "Quarterly";
 updateDate[i] = time();
 }
 }
 }
}

120

Appendix Q. Closure Plan Update Process Flow and Java Code

Closure Plan Update Process Flow
Closure Method Set

Set Item Demand Levels
Equal to Zero

Refresh update time and
description

Finish

False

Calculate Months
to Closure

Set Max ASLs = 0

Loop for each Part

Next Part

Closure Method

True

Set Demand Levels = EDQs

Time > Closure Date

True

Time > Closure Date

Calculate Months
to Closure

Set Item’s POS
Reorder Point

Calculate Expected
Demands

Compute Item’s
POS Demand

Level and Reorder
Point with COLT

MA Process

ROP compute
using COLT MA?

Calculate Expected Demand
Quantities (EDQs)

Set Item’s POS
Demand Level to EDQs and ROP

False

Next Part

False

True

Calculate DDR

Calculate DDFR

Calculate SLQ

Calculate COLT
Parameters

Calculate EBO
Distribution

Compute COLT
Marginal Analysis

Calculate average
VOO for any past

shipments

Update quarterly
variables

Calculate OSTQ

Loop for each Part

Calculate VOD

Base-level computations
(Non-DLA Items) or Centrally
computed levels (DLA Items)?

Compute EOQ for non-
DLA items

Compute EOQ for DLA
items

Non-DLA ItemsDLA Items

Next Part

Base-level computations (Non-
DLA Items) or Centrally computed

levels (DLA Items)?

Loop for each Part

DLA Items

Non-DLA Items

Fleet Size > 0?

DLA Items Non-DLA Items

True

Set Item’s Demand Level
and Reorder Point to a

value of Zero

Compute Item’s
POS Demand

Level and Reorder
Point with base
computations

False

Ship Excess Stock

Figure 20. Flowchart of Closure Plan Update Logic

121

Closure Plan Update Process Java Code

//Execute the first part of this if-else statement if closure method is to set Maximum
Adjusted //Stock levels to zero
if(Simulation.ClosureMethod == 1){

 //Calculate Months to Closure
 ClosureMonth = getMonth(timeToDate(getEngine().getStopTime()));
 ClosureYear = getYear(timeToDate(getEngine().getStopTime()));
 StartMonth = getMonth(timeToDate(Simulation.RedeploymentStart));
 StartYear = getYear(timeToDate(Simulation.RedeploymentStart));

 if(ClosureYear == getYear()){
 MToC = ClosureMonth - getMonth();
 }else if(ClosureYear > getYear() && ClosureMonth == getMonth()){
 MToC = 12 * (ClosureYear-getYear());
 }else if(ClosureYear > getYear() && ClosureMonth > getMonth()){
 MToC = 12*(ClosureYear - getYear()) + (ClosureMonth - getMonth());
 }else if(ClosureYear > getYear() && ClosureMonth < getMonth()){
 MToC = 12*(ClosureYear - getYear()) - (getMonth()- ClosureMonth);
 }

 //Set stock levels to 0 and refresh update time and description
 for(int i = 0; i <= 1; i++){
 S[i] = 0;
 s[i] = 0;
 updatePeriod[i] = "Closure - Max ASLs = 0";
 updateDate[i] = time();
 }

//Execute the second part of this if-else statement if closure method is to utilized
//Expected Demand Quantities as the item's new Demand Level
}else if(Simulation.ClosureMethod == 2){

 //Calculate Months to Closure
 ClosureMonth = getMonth(timeToDate(getEngine().getStopTime()));
 ClosureYear = getYear(timeToDate(getEngine().getStopTime()));
 StartMonth = getMonth(timeToDate(Simulation.RedeploymentStart));
 StartYear = getYear(timeToDate(Simulation.RedeploymentStart));

 if(ClosureYear == getYear()){
 MToC = ClosureMonth - getMonth();
 }else if(ClosureYear > getYear() && ClosureMonth == getMonth()){
 MToC = 12 * (ClosureYear-getYear());
 }else if(ClosureYear > getYear() && ClosureMonth > getMonth()){
 MToC = 12*(ClosureYear - getYear()) + (ClosureMonth - getMonth());
 }else if(ClosureYear > getYear() && ClosureMonth < getMonth()){
 MToC = 12*(ClosureYear - getYear()) - (getMonth()- ClosureMonth);
 }

 for(int i = 0; i <= 1; i++){

 if(i == 0){

//Calculate average Variance of Order and Ship Time (VOO) for any
//past shipments of Part 1

 if(p0VOO.size() != 0){
 double sump0VOO = 0;
 for (int j = 0; j < p0VOO.size(); j++){
 sump0VOO += p0VOO.get(j);
 }
 qtrlyVOO[0] = sump0VOO/p0VOO.size();
 }else if(p0VOO.size() == 0){
 qtrlyVOO[0] = 0;
 }
 //Clear VOO arrays
 p0VOO.clear();
 }else if(i == 1){
 //Calculate average VOO for any past shipments of Part 2

122

 if(p1VOO.size() != 0){
 double sump1VOO = 0;
 for (int j = 0; j < p1VOO.size(); j++){
 sump1VOO += p1VOO.get(j);
 }
 qtrlyVOO[1] = sump1VOO/p1VOO.size();
 }else if(p1VOO.size() == 0){
 qtrlyVOO[1] = 0;
 }
 //Clear VOO arrays
 p1VOO.clear();
 }

 //Calculate Cumulative Recurring Demand
 calcCRD(0,i);

//Calculate Daily Demand Rate
 calcDDR(i);

 //Calculate Daily Demand Frequency Rate
 calcDDFR(i);

//Calculate Cumulative Demand Quantity (CDQ) and Cumulative Demand
//Quantity Squared (CDQ2)

 calcCDQ_CDQ2(0,i);

 //Calculate Variance Of Demand
 calcVOD(i);

 //Calculate Safety Level Quantities
 calcSLQ(i);
 sLQ_formula[i] = sLQ_formulatempvalue[i];

 //Calculate Order and Ship Time Quantities
 calcOSTQ(i);

//Update EOQ Value based on how inventory calculations are computed: Base
//versus Centrally

 if(Simulation.SLQ_Calculation == 0){
 Base_EOQ(i);
 }else if (Simulation.SLQ_Calculation == 1){
 DLA_EOQ(i);
 }

 //Update quarterly variables
 qtrlyOST[i] = get_Main().soS.OST[i];
 qtrlyOSTQ[i] = OSTQ[i];
 qtrlySLQ[i] = SLQ[i];
 qtrlyND[i] = ND[i];

 //Calculate COLT parameters
 calcCOLTParameters(i);

 //Calculate EBO Distribution

EBO[i] = calc_nbEBO(i, wEOQ[i], s[i], BenchStock[i], Pipe[i], p[i], q[i],
VMR[i]);

 }

 //Compute COLT Marginal Analysis
 if(Simulation.SLQ_Calculation == 1){
 calcCOLTMA();
 }

//If aircraft remain calculate Order-Up-To-Levels with the Expected Demand
//Quantity method

 if(get_Main().aircraft.size() > 0){

 for(int i = 0; i <= 1; i++){

123

 //Calculate Expected Demands
 if((MToC-2) > 0){
 EDmds[i] = 30*(MToC-2) * DDR[i];
 }else if((MToC-2)== 0){
 EDmds[i] = 0;
 }

 //Calculate Expected Demand Quantities (Rounded EDmds)
 if(EDmds[i] > .5){
 EDQ[i] = round(EDmds[i]);
 }else if (EDmds[i] < .5){
 EDQ[i] = round(((MToC-2)/25) + EDmds[i]);
 }

 //Calculate Primary Operating Stock Closure Stock Level
 if(EDQ[i] < S[i] && EDQ[i] > 0){

//Compute POS Consumable Item Reorder Point
calcROP(i);

//Set Primary Operating Stock Consumable Item
//Reorder Point

 s[i] = ROP[i];

 //Set demand level

S[i] = EDQ[i];

 }else if(EDQ[i] == 0){
//Set Primary Operating Stock Consumable Item
//Reorder Point

 s[i] = 0;

 //Set demand level

S[i] = 0;

 }
 }
//If no aircraft remain, set Order-Up-To-Levels and Reorder points to a value of zero
 }else if(get_Main().aircraft.size() == 0){
 s[i] = 0;
 S[i] = 0;
 }

 //Update refresh time and description
 for(int i = 0; i <=1; i++){
 updatePeriod[i] = "Closure - Decreasing Stock Levels";
 updateDate[i] = time();
 }

}

//Determine if there is any excess stock to be shipped
shipp0FromELRS();
shipp1FromELRS();

124

Appendix R. CRD, CDQ, CDQ2, and DOFD Calculation Flow and Java Code

Calculation of CRD, CDQ, CDQ2, and DOFD Process Flow

Is time() >=
365

Month = March
or September?

Day = 30?

Calculate CDQ
and CDQ2

Time() – DOFD
>= 365?

True

False

True

True

True

Finish

False

False

False

Caculate CRD

Update DOFD

Figure 21. Flowchart of CRD, CDQ, CDQ2 and DOFD Calculation Logic

125

Calculation of CRD, CDQ, CDQ2, and DOFD Process Java Code

//As specified in AFMAN 23-110, Volume 2, Part 2, Chapter 19, Attachment 19B-31 and
//Attachment 19B-15 this event updates the CRD, CDQ, CDQ2
//and DOFD values based on annualization rules
for(int i = 0; i <= 1; i++){
 //Is model time more than 365 days?
 if(time() >= 365){
 //Are simulated months equal to March and September?
 if(getMonth() == 2 || getMonth() == 8){
 //Is simulate calendar day equal to 30?
 if(getDayOfMonth() == 30){
 if(time() - DOFD[i] >= 365){
//Annualize CDQ and CDQ2 IAW AFMAN 23-110, Volume 2, Part 2, Chapter 19, Attachment 19B-
15, Figure 19B15.2 (CDQ Prime)
 calcCDQ_CDQ2(1,i);
//Annualize CRD IAW AFMAN 23-110, Volume 2, Part 2, Chapter 19, Attachment 19B-31, Figure
19B31.1 note
 calcCRD(1,i);
//Annualize DOFD IAW AFMAN 23-110, Volume 2, Part 2, Chapter 19, Attachment 19B-31,
Figure 19B31.1 note
 DOFD[i] = time() - 365;
 }
 }
 }
//If simulated model time is less than 365 days, calculate CDQ, CDQ2, and CRD by using
//counts of agent demands (code located in ELRS customer port).
 }else if(time() < 365){
 }
}

126

Appendix S. Post-hoc Tests for Fleet Sizes of 24 and 36

Table 13. Mann-Whitney U Test Results for 24 Aircraft

Response Design Point -Design Point p-value

Total
Backorders

6-Months/Max ASL 12-Months/EDQ 0.0001*
6-Months/Max ASL 6-Months/EDQ 0.0001*
12-Months/Max ASL 12-Months/EDQ 0.0001*
6-Months/Max ASL 12-Months/Max ASL 0.0018*
6-Months/EDQ 12-Months/EDQ 0.0462
6-Months/EDQ 12-Months/Max ASL 0.0003*

Total
Backorder
Quantities

6-Months/Max ASL 12-Months/EDQ 0.0001*
6-Months/Max ASL 6-Months/EDQ 0.0001*
6-Months/Max ASL 12-Months/Max ASL 0.0001*
12-Months/Max ASL 12-Months/EDQ 0.0002*
6-Months/EDQ 12-Months/EDQ 0.0465
6-Months/EDQ 12-Months/Max ASL 0.0258

* - Statistically significant at α*=0.0083

Figure 22. Box Plots for 24 Aircraft

127

Table 14. Mann-Whitney U Test Results for 36 Aircraft

Response Design Point -Design Point p-value

Total
Backorders

6-Months/Max ASL 12-Months/EDQ 0.0001*
6-Months/Max ASL 6-Months/EDQ 0.0001*
12-Months/Max ASL 12-Months/EDQ 0.0001*
6-Months/Max ASL 12-Months/Max ASL 0.0007*
6-Months/EDQ 12-Months/EDQ 0.9109
6-Months/EDQ 12-Months/Max ASL 0.0001*

Total
Backorder
Quantities

6-Months/Max ASL 12-Months/EDQ 0.0001*
6-Months/Max ASL 6-Months/EDQ 0.0001*
12-Months/Max ASL 12-Months/EDQ 0.0001*
6-Months/Max ASL 12-Months/Max ASL 0.0251
6-Months/EDQ 12-Months/EDQ 0.8626
6-Months/EDQ 12-Months/Max ASL 0.0001*

* - Statistically significant at α*=0.0083

Figure 23. Box Plots for 36 Aircraft

128

Appendix T. Summary Chart

129

Bibliography

Banks, J., Carson II, J. S., Nelson, B. L., & Nichol, D. M. (2010). Discrete-Event System
Simulation (5th ed.). Upper Saddle River, NJ: Pearson Education, Inc.

Barbosa, L. C., & Friedman, M. (1989). Inventory Lot Size Models with Vanishing
Market. Journal of Operational Research Society, 1129-1132.

Blazer, D., King, R., O'Malley, T. J., & Reynolds, S. (2002). Stockage Policy: A
handbook for the Air Force Supply Professional. Maxwell AFB, AL: Air Force
Logistics Management Agency.

Bragg, S. M. (2004). Inventory Best Practices. Hoboken, NJ: John Wiley & Sons, Inc.

Carson II, J. S. (2005). Introduction to Modeling and Simulation. Proceedings of the
2005 Winter Simulation Conference (pp. 16-23). New York, NY: IEEE.

Chan, W. V., Macal, C. M., & Son, Y.-J. (2010). Agent-Based Simulation Tutorial-
Simulation of Emergent Behavior and Differences Between Agent-Based
Simulation and Discrete-Event Simulations. Proceedings of the 2010 Winter
Simulation Conference, (pp. 135-150).

Deemer, R. L., Kaplan, A. J., & Kruse, W. K. (1974). Application of Negative Binomial
Probability to Inventory Control. Department of Commerce, National Technical
Information Service. Alexandria, WA: National Technical Information Service.

Department of the Air Force (DAF). (2002). COLT-Reduce Customer Wait Time by 65%
at No Extra Cost. 2002 Award for Excellence in Supply Chain Operations
Submission to Supply Chain Council. Wright-Patterson AFB, OH: Headquarters
Air Force Materiel Command/LGS/XPS.

-----. (2002). Purchasing Aircraft Availability for Pennies on the Dollar. 2003 Award for
Excellence in Supply Chain Operations Submission to Supply Chain Council.
Wright-Patterson AFB: Headquarters Air Force Material Command/LGI.

-----. (2011, October 1). USAF Supply Manual: Stockage Policy. AFMAN 23-110 Vol. 2,
Part 2, Ch. 19. Washington DC: Headquarters USAF.

Fulk, D. A. (2011, April 6). Balad Levels Drawdown Plan. Langley AFB, VA: Logistics
Management Institute.

-----. (1999). Demystifying RBL. Air Force Journal of Logistics, 23(2), 3, 36-40.

-----. (2011, December 5). RE: Balad AB Drawdown Assumptions.

-----. (2011, April 6). Sustainment Operations Base: COLT Leveling Changes. Langley
AFB, VA: Logistics Management Institute.

130

Fulk, D. A., Blazer, D. J., Smith Jr., B. N., & Hileman, D. (2006). Improving Base
Demand Levels Using COLT. Air Force Journal of Logistics, 30(2), 28-33.

Gaudette, K., Alcorn, H. K., & Mangan, M. (2001). Reparability Forecast Model. Air
Force Journal of Logistics, 26(4), 6-11, 44.

Gaudette, K., Blazer, D. J., & Alcorn, H. K. (2001). Managing Air Force Depot
Consumables: The Big Picture. Air Force Journal of Logistics, 26(4), 3-5, 43-44.

Hill, R. M., Omar, M., & Smith, D. K. (1999). Stock replenishment policies for stochastic
exponentially-declining demand process. European Journal of Operational
Research, 374-388.

Hunt, A. (2011). Effects of Using Standard Peacetime Supply Support Procedures at
Prince Sultan Air Base. Maxwell AFB, AL: Air Force Logistics Management
Agency.

Kelly-Herard, A. R. (2011, December). Last commander of Joint Base Balad departs. Air
Force Print News Today. Retrieved January 30, 2012, from
http://www.af.mil/news/story.asp?id=123282116

Kleijnen, J. P. (2008). Design of Experiments: Overview. Proceedings of the 2008 Winter
Simulation Conference (pp. 479-488). New York, NY: IEEE.

Little, J. D. (2004). Models and Managers: The Concept of a Decision Calculus.
Management Science, 50(12), 1841-1853.

Macal, C. M., & North, M. J. (2008). Agent-Based Modeling and Simulation: ABMS
Examples. Proceedings of the 2008 Winter Simulation Conference (pp. 101-112).
New York, NY: IEEE.

Macal, C. M., & North, M. J. (2007). Managing Business Complexity: Discovering
Strategic Solutions with Agent-Based Modeling and Simulation. New York, NY:
Oxford University Press.

Newbold, P., Carlson, W. L., & Thorne, B. (2010). Statistics for Business and Economics
(7th ed.). Upper Saddle River, NJ: Pearson Education, Inc.

Parson, C. R. (2010, May). Simulation Modeling and Analysis of TNMCS for the B-1
Strategic Bomber. MS Thesis. Wright-Patterson AFB, OH: School of Engineering
and Management, Air Force Institute of Technology (AU).

Peterson, R., Pyke, D. F., & Silver, E. A. (1998). Inventory Management and Production
Planning and Scheduling (3rd ed.). New York, NY: John Wiley & Sons.

131

Ramani, S., & Venkatraman, R. (1988). Inventory Replenishment Policies for the Case of
Decreasing Trend in Demand. Engineering Costs and Production Economics,
169-174.

Sargent, R. (2007). Verification and Validation of Simulation Models. Proceedings of the
2007 Winter Simulation Conference (pp. 162-176). New York, NY: IEEE Press.

Sherbrooke, C. C. (1992). Optimal Inventory Modeling of Systems: Mult-Echelon
Techniques. New York, NY: John Wiley & Sons, Inc.

-----. (1997). Using Sorties vs. Flying Hours to Predict Aircraft Spares Demand. McLean,
VA: Logistics Management Institute.

U.S. Department of Defense (DoD). (2010, March 22). Joint Mobilization Planning. Joint
Publication 4-05. Washington DC: Government Printing Offoce.

Vinson, J., & Gaudette, K. (2002). Cusomter-Oriented Leveling Technique. Air Force
Journal of Logistics, 27(1), 18-21.

Vogt, W. P. (2005). Dicitionary of Statistics and Methodology: A Non-Technical Guide
For the Social Sciences (3rd ed.). Thousand Oaks, CA: Sage Publications, Inc.

Zhao, G. Q., Yang, J., & Rand, G. K. (2001). Heuristics for replenishment with linear
decreasing demand. International Journal of Production Economics, 339-345.

1

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

03-22-2012
2. REPORT TYPE

Master’s Thesis
3. DATES COVERED (From – To)

Sep 2011 – Mar 2012

4. TITLE AND SUBTITLE

Evaluation of Inventory Reduction Strategies: Balad Air Base Case Study

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Glassburner, Aaron V.

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 P Street, Building 640
 WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT-LSCM-ENS-12-05

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 Air Force Logistics Management Agency
 Attn: Dr. Douglas Blazer
 501 Ward Street DSN: 596-1406
 Maxwell AFB, AL 36114-3236
 e-mail: douglas.blazer@maxwell.af.mil

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 DISTRIBUTION STATEMENT A
 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
13. SUPPLEMENTARY NOTES

14. ABSTRACT
 The end of military operations in Iraq brought a new set of challenges for Air Force supply professionals as they responsibly
reduced levels of assets within the country while supporting on-going missions. This research evaluates two separate supply reduction
plans that were implemented at Balad Air Base during the Air Force’s final months in the area of operations. The logic of Air Force
consumable inventory computations are modeled in detail and historical data from supply records are utilized to evaluate each plan’s
supportability to different notional fleet sizes. Each plan is evaluated under measures of backorders, backorder quantities, and
customer wait time. Furthermore, this research combines these measures with a commercial business measure to ascertain which plan
is better suited to reducing supply levels while maintaining adequate levels of support to on-going operations.
 An agent-based model simulation is developed as the analysis technique for this study. Simulation models are excellent tools
to evaluate alternative scenarios that are otherwise too costly or impractical to evaluate on a live system. Agent-based modeling
provides a unique bottom-up approach where analysis is permissible not only at a system level but also at the process level. The model
developed for this study allows for the differentiation and evaluation of the supply reduction plans implemented at Balad AB under
dynamic conditions. Additionally, it provides insight for consideration by Air Force senior leaders into which plan is better suited to
support supply drawdowns in future contingency base closings.
15. SUBJECT TERMS
 Inventory, Supply Chain, Customer Oriented Leveling Technique (COLT), Base Computation Methods, Centrally Computed
Methods, Economic Order Quantity, Agent Based Modeling and Simulation, Balad Air Base
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

145

19a. NAME OF RESPONSIBLE PERSON
Dr. John O. Miller (ENS)

a. REPORT
\

U

b. ABSTRACT
\
U

c. THIS PAGE

U

19b. TELEPHONE NUMBER (Include area code)
(937) 255-6565 x4326

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

